Whisper Small En Medimix

This model is a fine-tuned version of openai/whisper-small on the 500 pes_colab 10.6 dataset. It achieves the following results on the evaluation set:

  • Loss: 0.4537
  • Wer: 10.6667

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-06
  • train_batch_size: 16
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 200
  • num_epochs: 8
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer
0.0384 1.0 25 0.4705 12.2222
0.0375 2.0 50 0.4689 12.0
0.0332 3.0 75 0.4666 11.0370
0.0293 4.0 100 0.4636 11.1111
0.0242 5.0 125 0.4612 11.0370
0.0197 6.0 150 0.4586 10.9630
0.0152 7.0 175 0.4555 10.7407
0.0116 8.0 200 0.4537 10.6667

Framework versions

  • Transformers 4.47.1
  • Pytorch 2.5.1+cu124
  • Datasets 3.2.0
  • Tokenizers 0.21.0
Downloads last month
129
Safetensors
Model size
242M params
Tensor type
F32
·
Inference Providers NEW
This model is not currently available via any of the supported third-party Inference Providers, and the model is not deployed on the HF Inference API.

Model tree for Bhaveen/500medimix

Finetuned
(2250)
this model