hubert_large_emodb

This model is a fine-tuned version of facebook/hubert-large-ll60k on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.9789
  • Uar: 0.8800
  • Acc: 0.8897

For the test Set:

  • UAR: 0.805
  • 0.845

FI scores:
labels: ['anger', 'happiness', 'sadness', 'neutral'] Result per class (F1 score): [0.84, 0.364, 1.0, 1.0]

Model description

This model is to predict one of four emotion categories: 'anger', 'happiness', 'sadness', 'neutral'

Intended uses & limitations

How to use:

from transformers import pipeline
pipe = pipeline("audio-classification", model="Bagus/hubert_large_emodb")
pipe('file.wav')

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 32
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 10

### Training results

| Training Loss | Epoch | Step | Validation Loss | Uar    | Acc    |
|:-------------:|:-----:|:----:|:---------------:|:------:|:------:|
| No log        | 0.15  | 1    | 1.3865          | 0.25   | 0.1985 |
| No log        | 0.31  | 2    | 1.3794          | 0.25   | 0.1985 |
| No log        | 0.46  | 3    | 1.3745          | 0.25   | 0.1985 |
| No log        | 0.62  | 4    | 1.3684          | 0.3227 | 0.3162 |
| No log        | 0.77  | 5    | 1.3592          | 0.4722 | 0.5809 |
| No log        | 0.92  | 6    | 1.3487          | 0.3981 | 0.5221 |
| 1.4402        | 1.08  | 7    | 1.3406          | 0.4444 | 0.5588 |
| 1.4402        | 1.23  | 8    | 1.3359          | 0.5278 | 0.625  |
| 1.4402        | 1.38  | 9    | 1.3305          | 0.5418 | 0.6324 |
| 1.4402        | 1.54  | 10   | 1.3228          | 0.5790 | 0.6544 |
| 1.4402        | 1.69  | 11   | 1.3078          | 0.6392 | 0.6985 |
| 1.4402        | 1.85  | 12   | 1.2832          | 0.6577 | 0.7132 |
| 1.4402        | 2.0   | 13   | 1.2445          | 0.6670 | 0.7206 |
| 1.0783        | 2.15  | 14   | 1.2087          | 0.6715 | 0.7279 |
| 1.0783        | 2.31  | 15   | 1.1857          | 0.6579 | 0.7059 |
| 1.0783        | 2.46  | 16   | 1.1746          | 0.6488 | 0.6912 |
| 1.0783        | 2.62  | 17   | 1.1666          | 0.6397 | 0.6765 |
| 1.0783        | 2.77  | 18   | 1.1393          | 0.6443 | 0.6838 |
| 1.0783        | 2.92  | 19   | 1.1079          | 0.6810 | 0.7279 |
| 0.9255        | 3.08  | 20   | 1.0908          | 0.7271 | 0.7721 |
| 0.9255        | 3.23  | 21   | 1.0786          | 0.7131 | 0.7647 |
| 0.9255        | 3.38  | 22   | 1.0697          | 0.6574 | 0.7279 |
| 0.9255        | 3.54  | 23   | 1.0711          | 0.6111 | 0.6912 |
| 0.9255        | 3.69  | 24   | 1.0651          | 0.6389 | 0.7132 |
| 0.9255        | 3.85  | 25   | 1.0596          | 0.6481 | 0.7206 |
| 0.9255        | 4.0   | 26   | 1.0566          | 0.6667 | 0.7353 |
| 0.6547        | 4.15  | 27   | 1.0562          | 0.6667 | 0.7353 |
| 0.6547        | 4.31  | 28   | 1.0553          | 0.7222 | 0.7794 |
| 0.6547        | 4.46  | 29   | 1.0549          | 0.7316 | 0.7794 |
| 0.6547        | 4.62  | 30   | 1.0546          | 0.7456 | 0.7868 |
| 0.6547        | 4.77  | 31   | 1.0516          | 0.7549 | 0.7941 |
| 0.6547        | 4.92  | 32   | 1.0428          | 0.7456 | 0.7868 |
| 0.7058        | 5.08  | 33   | 1.0312          | 0.7502 | 0.7941 |
| 0.7058        | 5.23  | 34   | 1.0235          | 0.7594 | 0.8015 |
| 0.7058        | 5.38  | 35   | 1.0143          | 0.7732 | 0.8162 |
| 0.7058        | 5.54  | 36   | 1.0079          | 0.7963 | 0.8382 |
| 0.7058        | 5.69  | 37   | 1.0049          | 0.7963 | 0.8382 |
| 0.7058        | 5.85  | 38   | 1.0051          | 0.7778 | 0.8235 |
| 0.7058        | 6.0   | 39   | 1.0066          | 0.7593 | 0.8088 |
| 0.4919        | 6.15  | 40   | 1.0119          | 0.7407 | 0.7941 |
| 0.4919        | 6.31  | 41   | 1.0172          | 0.7222 | 0.7794 |
| 0.4919        | 6.46  | 42   | 1.0191          | 0.7130 | 0.7721 |
| 0.4919        | 6.62  | 43   | 1.0175          | 0.7130 | 0.7721 |
| 0.4919        | 6.77  | 44   | 1.0144          | 0.7222 | 0.7794 |
| 0.4919        | 6.92  | 45   | 1.0094          | 0.7222 | 0.7794 |
| 0.5048        | 7.08  | 46   | 1.0050          | 0.7593 | 0.8088 |
| 0.5048        | 7.23  | 47   | 0.9984          | 0.7870 | 0.8309 |
| 0.5048        | 7.38  | 48   | 0.9948          | 0.7778 | 0.8235 |
| 0.5048        | 7.54  | 49   | 0.9917          | 0.7825 | 0.8235 |
| 0.5048        | 7.69  | 50   | 0.9884          | 0.8195 | 0.8529 |
| 0.5048        | 7.85  | 51   | 0.9846          | 0.8242 | 0.8529 |
| 0.5048        | 8.0   | 52   | 0.9827          | 0.8152 | 0.8382 |
| 0.4133        | 8.15  | 53   | 0.9816          | 0.8337 | 0.8529 |
| 0.4133        | 8.31  | 54   | 0.9812          | 0.8522 | 0.8676 |
| 0.4133        | 8.46  | 55   | 0.9810          | 0.8522 | 0.8676 |
| 0.4133        | 8.62  | 56   | 0.9810          | 0.8707 | 0.8824 |
| 0.4133        | 8.77  | 57   | 0.9806          | 0.8800 | 0.8897 |
| 0.4133        | 8.92  | 58   | 0.9796          | 0.8800 | 0.8897 |
| 0.4717        | 9.08  | 59   | 0.9793          | 0.8800 | 0.8897 |
| 0.4717        | 9.23  | 60   | 0.9789          | 0.8800 | 0.8897 |


### Framework versions

- Transformers 4.32.0
- Pytorch 2.3.0+cu121
- Datasets 2.19.1
- Tokenizers 0.13.3
Downloads last month
13
Inference Providers NEW
This model is not currently available via any of the supported Inference Providers.
The model cannot be deployed to the HF Inference API: The model has no pipeline_tag.

Model tree for Bagus/hubert_large_emodb

Finetuned
(11)
this model