Original model github address:DenoisingDiffusionProbabilityModel-ddpm-
This is a simple attempt. I trained with CIFAR-10 dataset.
Usage
# 生成图像有误...以下代码需修改!!!
import torch
from diffusers import DDPMPipeline, DDPMScheduler
from diffusers.models import UNet2DModel
from PIL import Image
import matplotlib.pyplot as plt
# 模型ID
model_id = "BackTo2014/DDPM-test"
# 检查设备
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
# 加载UNet模型和配置文件
try:
unet = UNet2DModel.from_pretrained(
model_id,
ignore_mismatched_sizes=True,
low_cpu_mem_usage=False,
).to(device) # 将模型移动到GPU上
except ValueError as e:
print(f"Error loading model: {e}")
# 获取模型的state_dict
state_dict = unet.state_dict()
# 手动初始化缺失的权重
for key in e.args[0].split(': ')[1].split(', '):
name, size = key.split('.')
size = tuple(map(int, size.replace(')', '').replace('(', '').split(',')))
# 创建随机权重
new_weight = torch.randn(size).to(device) # 将权重移动到GPU上
# 更新state_dict
state_dict[name] = new_weight
# 加载更新后的state_dict
unet.load_state_dict(state_dict).to(device) # 将模型移动到GPU上
# 如果sample_size未定义,则手动设置
if unet.config.sample_size is None:
# 假设样本尺寸为 32x32
unet.config.sample_size = (32, 32)
# 初始化Scheduler
scheduler = DDPMScheduler.from_config(model_id)
# 创建DDPMPipeline
pipeline = DDPMPipeline(unet=unet, scheduler=scheduler)
# 生成图像
generator = torch.manual_seed(0)
image = pipeline(num_inference_steps=1000, generator=generator).images[0]
# 使用matplotlib显示图像
plt.imshow(image)
plt.axis('off') # 不显示坐标轴
plt.show()
# 保存图像
image.save("generated_image.png")