AurrieMartinez's picture
AurrieMartinez/roberta-base-lora-text-classification-by-finetuning-roberta
f200b07 verified
|
raw
history blame
2.11 kB
metadata
license: mit
library_name: peft
tags:
  - generated_from_trainer
base_model: roberta-base
metrics:
  - accuracy
model-index:
  - name: roberta-base-lora-text-classification
    results: []

roberta-base-lora-text-classification

This model is a fine-tuned version of roberta-base on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.6577
  • Accuracy: {'accuracy': 0.933}

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.001
  • train_batch_size: 4
  • eval_batch_size: 4
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 10

Training results

Training Loss Epoch Step Validation Loss Accuracy
No log 1.0 250 0.2663 {'accuracy': 0.936}
0.4315 2.0 500 0.3082 {'accuracy': 0.934}
0.4315 3.0 750 0.4077 {'accuracy': 0.937}
0.1531 4.0 1000 0.5257 {'accuracy': 0.93}
0.1531 5.0 1250 0.5102 {'accuracy': 0.939}
0.0797 6.0 1500 0.5795 {'accuracy': 0.934}
0.0797 7.0 1750 0.5838 {'accuracy': 0.933}
0.0373 8.0 2000 0.6731 {'accuracy': 0.933}
0.0373 9.0 2250 0.6507 {'accuracy': 0.938}
0.0218 10.0 2500 0.6577 {'accuracy': 0.933}

Framework versions

  • PEFT 0.11.1
  • Transformers 4.41.1
  • Pytorch 2.3.0+cu121
  • Datasets 2.19.2
  • Tokenizers 0.19.1