Asadali12's picture
End of training
d21b535 verified
metadata
library_name: transformers
license: mit
base_model: google/vivit-b-16x2-kinetics400
tags:
  - generated_from_trainer
metrics:
  - accuracy
  - f1
  - recall
  - precision
model-index:
  - name: vivit-b-16x2-kinetics400-finetuned-cricket_shot_detection_31
    results: []

vivit-b-16x2-kinetics400-finetuned-cricket_shot_detection_31

This model is a fine-tuned version of google/vivit-b-16x2-kinetics400 on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 1.0141
  • Accuracy: 0.6667
  • F1: 0.6537
  • Recall: 0.6667
  • Precision: 0.75

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 4e-06
  • train_batch_size: 4
  • eval_batch_size: 4
  • seed: 42
  • optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • training_steps: 4624

Training results

Training Loss Epoch Step Validation Loss Accuracy F1 Recall Precision
1.7482 0.0314 145 1.7665 0.2 0.1133 0.2 0.0794
1.3969 1.0314 290 1.5064 0.6 0.5700 0.6 0.6422
1.0075 2.0314 435 1.2230 0.5333 0.5467 0.5333 0.5778
0.805 3.0314 580 0.9838 0.6667 0.6537 0.6667 0.75
0.9045 4.0314 725 1.0228 0.6 0.5676 0.6 0.5444
0.4916 5.0314 870 1.0251 0.6667 0.6448 0.6667 0.7056
0.2283 6.0314 1015 1.0003 0.6667 0.6537 0.6667 0.75

Framework versions

  • Transformers 4.47.0
  • Pytorch 2.6.0+cu124
  • Datasets 3.2.0
  • Tokenizers 0.21.0