TestForColab

This model is a fine-tuned version of prajjwal1/bert-tiny on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.2129
  • Accuracy: 0.94
  • F1: 0.9394

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 10

Training results

Training Loss Epoch Step Validation Loss Accuracy F1
No log 0.01 50 0.6913 0.55 0.3903
No log 0.02 100 0.6909 0.59 0.5186
No log 0.03 150 0.6934 0.45 0.2793
No log 0.04 200 0.6889 0.57 0.5709
No log 0.05 250 0.6818 0.56 0.5607
No log 0.06 300 0.6854 0.56 0.5607
No log 0.07 350 0.6878 0.56 0.5607
No log 0.08 400 0.7014 0.56 0.5607
No log 0.09 450 0.6797 0.56 0.5607
0.6799 0.1 500 0.6731 0.56 0.5607
0.6799 0.11 550 0.6490 0.64 0.6203
0.6799 0.12 600 0.6456 0.71 0.7049
0.6799 0.13 650 0.6259 0.64 0.6203
0.6799 0.14 700 0.5264 0.83 0.8304
0.6799 0.15 750 0.4671 0.83 0.8304
0.6799 0.16 800 0.3387 0.94 0.9394
0.6799 0.17 850 0.2935 0.94 0.9394
0.6799 0.18 900 0.2604 0.94 0.9394
0.6799 0.19 950 0.2443 0.94 0.9394
0.4884 0.2 1000 0.2355 0.94 0.9394
0.4884 0.2 1050 0.2286 0.94 0.9394
0.4884 0.21 1100 0.2240 0.94 0.9394
0.4884 0.22 1150 0.2201 0.94 0.9394
0.4884 0.23 1200 0.2165 0.94 0.9394
0.4884 0.24 1250 0.2129 0.94 0.9394

Framework versions

  • Transformers 4.35.2
  • Pytorch 2.1.0+cu118
  • Datasets 2.15.0
  • Tokenizers 0.15.0
Downloads last month
5
Safetensors
Model size
4.39M params
Tensor type
F32
ยท
Inference Providers NEW
This model isn't deployed by any Inference Provider. ๐Ÿ™‹ Ask for provider support

Model tree for Anwaarma/TestForColab

Finetuned
(63)
this model