AntoineD's picture
End of training
c105f24
|
raw
history blame
3.18 kB
metadata
license: mit
base_model: camembert-base
tags:
  - generated_from_trainer
metrics:
  - accuracy
model-index:
  - name: camembert_classification_tools_qlora
    results: []

camembert_classification_tools_qlora

This model is a fine-tuned version of camembert-base on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 1.6740
  • Accuracy: 0.425

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0001
  • train_batch_size: 24
  • eval_batch_size: 192
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 30

Training results

Training Loss Epoch Step Validation Loss Accuracy
No log 1.0 5 2.0911 0.075
No log 2.0 10 2.1007 0.05
No log 3.0 15 2.1026 0.05
No log 4.0 20 2.0981 0.1
No log 5.0 25 2.0945 0.125
No log 6.0 30 2.0925 0.125
No log 7.0 35 2.0857 0.15
No log 8.0 40 2.0703 0.175
No log 9.0 45 2.0553 0.25
No log 10.0 50 2.0371 0.325
No log 11.0 55 2.0138 0.325
No log 12.0 60 1.9877 0.325
No log 13.0 65 1.9577 0.4
No log 14.0 70 1.9285 0.4
No log 15.0 75 1.9028 0.4
No log 16.0 80 1.8771 0.4
No log 17.0 85 1.8537 0.4
No log 18.0 90 1.8311 0.4
No log 19.0 95 1.8051 0.4
No log 20.0 100 1.7835 0.425
No log 21.0 105 1.7632 0.425
No log 22.0 110 1.7449 0.425
No log 23.0 115 1.7284 0.425
No log 24.0 120 1.7144 0.425
No log 25.0 125 1.7027 0.425
No log 26.0 130 1.6925 0.425
No log 27.0 135 1.6846 0.425
No log 28.0 140 1.6789 0.425
No log 29.0 145 1.6753 0.425
No log 30.0 150 1.6740 0.425

Framework versions

  • Transformers 4.34.0
  • Pytorch 2.0.1+cu117
  • Datasets 2.14.5
  • Tokenizers 0.14.1