populism_model320 / README.md
AnonymousCS's picture
End of training
fef157e verified
---
library_name: transformers
license: apache-2.0
base_model: google-bert/bert-base-multilingual-uncased
tags:
- generated_from_trainer
metrics:
- accuracy
model-index:
- name: populism_model320
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# populism_model320
This model is a fine-tuned version of [google-bert/bert-base-multilingual-uncased](https://huggingface.co/google-bert/bert-base-multilingual-uncased) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.3780
- Accuracy: 0.9740
- 1-f1: 0.6111
- 1-recall: 0.5789
- 1-precision: 0.6471
- Balanced Acc: 0.7837
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- num_epochs: 3
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy | 1-f1 | 1-recall | 1-precision | Balanced Acc |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|:--------:|:-----------:|:------------:|
| 0.1759 | 1.0 | 68 | 0.4895 | 0.9758 | 0.5517 | 0.4211 | 0.8 | 0.7086 |
| 0.0981 | 2.0 | 136 | 0.2614 | 0.9703 | 0.6190 | 0.6842 | 0.5652 | 0.8325 |
| 0.118 | 3.0 | 204 | 0.3780 | 0.9740 | 0.6111 | 0.5789 | 0.6471 | 0.7837 |
### Framework versions
- Transformers 4.49.0.dev0
- Pytorch 2.5.1+cu124
- Datasets 3.2.0
- Tokenizers 0.21.0