|
--- |
|
license: mit |
|
tags: |
|
- generated_from_trainer |
|
datasets: |
|
- wnut_17 |
|
metrics: |
|
- precision |
|
- recall |
|
- f1 |
|
- accuracy |
|
model-index: |
|
- name: xlm-roberta-base-wnut2017-en |
|
results: |
|
- task: |
|
name: Token Classification |
|
type: token-classification |
|
dataset: |
|
name: wnut_17 |
|
type: wnut_17 |
|
config: wnut_17 |
|
split: validation |
|
args: wnut_17 |
|
metrics: |
|
- name: Precision |
|
type: precision |
|
value: 0.7219662058371735 |
|
- name: Recall |
|
type: recall |
|
value: 0.562200956937799 |
|
- name: F1 |
|
type: f1 |
|
value: 0.6321452589105581 |
|
- name: Accuracy |
|
type: accuracy |
|
value: 0.9589398080467807 |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# xlm-roberta-base-wnut2017-en |
|
|
|
This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on [wnut_17](https://huggingface.co/datasets/wnut_17) dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.2319 |
|
- Precision: 0.7220 |
|
- Recall: 0.5622 |
|
- F1: 0.6321 |
|
- Accuracy: 0.9589 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 2e-05 |
|
- train_batch_size: 32 |
|
- eval_batch_size: 32 |
|
- seed: 42 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- num_epochs: 15 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |
|
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| |
|
| No log | 1.0 | 107 | 0.2789 | 0.4679 | 0.3397 | 0.3936 | 0.9408 | |
|
| No log | 2.0 | 214 | 0.2092 | 0.6875 | 0.5 | 0.5789 | 0.9518 | |
|
| No log | 3.0 | 321 | 0.1968 | 0.6194 | 0.5431 | 0.5787 | 0.9567 | |
|
| No log | 4.0 | 428 | 0.2172 | 0.7212 | 0.5383 | 0.6164 | 0.9586 | |
|
| 0.1523 | 5.0 | 535 | 0.2319 | 0.7220 | 0.5622 | 0.6321 | 0.9589 | |
|
| 0.1523 | 6.0 | 642 | 0.2023 | 0.6180 | 0.5514 | 0.5828 | 0.9577 | |
|
| 0.1523 | 7.0 | 749 | 0.2494 | 0.6895 | 0.5419 | 0.6068 | 0.9589 | |
|
| 0.1523 | 8.0 | 856 | 0.2844 | 0.7018 | 0.5263 | 0.6015 | 0.9578 | |
|
| 0.1523 | 9.0 | 963 | 0.2568 | 0.6808 | 0.5562 | 0.6122 | 0.9592 | |
|
| 0.0294 | 10.0 | 1070 | 0.2453 | 0.6718 | 0.5754 | 0.6198 | 0.9596 | |
|
| 0.0294 | 11.0 | 1177 | 0.2538 | 0.6933 | 0.5706 | 0.6260 | 0.9600 | |
|
| 0.0294 | 12.0 | 1284 | 0.2638 | 0.6865 | 0.5658 | 0.6203 | 0.9593 | |
|
| 0.0294 | 13.0 | 1391 | 0.2744 | 0.6764 | 0.5526 | 0.6083 | 0.9587 | |
|
| 0.0294 | 14.0 | 1498 | 0.2714 | 0.6812 | 0.5622 | 0.6160 | 0.9590 | |
|
| 0.0135 | 15.0 | 1605 | 0.2724 | 0.6830 | 0.5670 | 0.6196 | 0.9593 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.26.1 |
|
- Pytorch 1.13.1+cu116 |
|
- Datasets 2.9.0 |
|
- Tokenizers 0.13.2 |
|
### Citation |
|
If you used the datasets and models in this repository, please cite it. |
|
|
|
```bibtex |
|
@misc{https://doi.org/10.48550/arxiv.2302.09611, |
|
doi = {10.48550/ARXIV.2302.09611}, |
|
url = {https://arxiv.org/abs/2302.09611}, |
|
author = {Sartipi, Amir and Fatemi, Afsaneh}, |
|
keywords = {Computation and Language (cs.CL), Artificial Intelligence (cs.AI), FOS: Computer and information sciences, FOS: Computer and information sciences}, |
|
title = {Exploring the Potential of Machine Translation for Generating Named Entity Datasets: A Case Study between Persian and English}, |
|
publisher = {arXiv}, |
|
year = {2023}, |
|
copyright = {arXiv.org perpetual, non-exclusive license} |
|
} |
|
``` |
|
|