bert-base-parsbert-uncased-conll2003
This model is a fine-tuned version of HooshvareLab/bert-base-parsbert-uncased on the conll2003-persian dataset. It achieves the following results on the evaluation set:
- Loss: 0.1631
- Precision: 0.8776
- Recall: 0.8898
- F1: 0.8836
- Accuracy: 0.9765
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 15
Training results
Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
---|---|---|---|---|---|---|---|
No log | 1.0 | 430 | 0.1063 | 0.8404 | 0.8476 | 0.8440 | 0.9696 |
0.1854 | 2.0 | 860 | 0.0982 | 0.8694 | 0.8696 | 0.8695 | 0.9743 |
0.0589 | 3.0 | 1290 | 0.1051 | 0.8649 | 0.8775 | 0.8712 | 0.9741 |
0.0285 | 4.0 | 1720 | 0.1233 | 0.8700 | 0.8787 | 0.8743 | 0.9745 |
0.0136 | 5.0 | 2150 | 0.1360 | 0.8700 | 0.8738 | 0.8719 | 0.9745 |
0.0077 | 6.0 | 2580 | 0.1390 | 0.8785 | 0.8812 | 0.8799 | 0.9754 |
0.0046 | 7.0 | 3010 | 0.1438 | 0.8803 | 0.8827 | 0.8815 | 0.9760 |
0.0046 | 8.0 | 3440 | 0.1510 | 0.8763 | 0.8794 | 0.8779 | 0.9756 |
0.0027 | 9.0 | 3870 | 0.1606 | 0.8798 | 0.8851 | 0.8824 | 0.9764 |
0.0021 | 10.0 | 4300 | 0.1631 | 0.8776 | 0.8898 | 0.8836 | 0.9765 |
0.0015 | 11.0 | 4730 | 0.1649 | 0.8782 | 0.8827 | 0.8804 | 0.9760 |
0.001 | 12.0 | 5160 | 0.1646 | 0.8787 | 0.8829 | 0.8808 | 0.9761 |
0.0008 | 13.0 | 5590 | 0.1686 | 0.8811 | 0.8846 | 0.8829 | 0.9765 |
0.0006 | 14.0 | 6020 | 0.1714 | 0.8820 | 0.8831 | 0.8825 | 0.9765 |
0.0006 | 15.0 | 6450 | 0.1706 | 0.8814 | 0.8838 | 0.8826 | 0.9764 |
Framework versions
- Transformers 4.27.0.dev0
- Pytorch 1.13.1+cu116
- Datasets 2.8.0
- Tokenizers 0.13.2
Citation
If you used the datasets and models in this repository, please cite it.
@misc{https://doi.org/10.48550/arxiv.2302.09611,
doi = {10.48550/ARXIV.2302.09611},
url = {https://arxiv.org/abs/2302.09611},
author = {Sartipi, Amir and Fatemi, Afsaneh},
keywords = {Computation and Language (cs.CL), Artificial Intelligence (cs.AI), FOS: Computer and information sciences, FOS: Computer and information sciences},
title = {Exploring the Potential of Machine Translation for Generating Named Entity Datasets: A Case Study between Persian and English},
publisher = {arXiv},
year = {2023},
copyright = {arXiv.org perpetual, non-exclusive license}
}
- Downloads last month
- 120
Inference Providers
NEW
This model is not currently available via any of the supported Inference Providers.