Built with Axolotl

See axolotl config

axolotl version: 0.4.1

adapter: lora
base_model: katuni4ka/tiny-random-qwen1.5-moe
bf16: true
chat_template: llama3
dataset_prepared_path: null
datasets:
- data_files:
  - 4af3f7c1fa5610ea_train_data.json
  ds_type: json
  format: custom
  path: /workspace/input_data/4af3f7c1fa5610ea_train_data.json
  type:
    field_input: input
    field_instruction: instruction
    field_output: output
    format: '{instruction} {input}'
    no_input_format: '{instruction}'
    system_format: '{system}'
    system_prompt: ''
debug: null
device_map:
  ? ''
  : 0,1,2,3,4,5,6,7
early_stopping_patience: 2
eval_max_new_tokens: 128
eval_steps: 100
eval_table_size: null
flash_attention: true
gradient_accumulation_steps: 8
gradient_checkpointing: true
group_by_length: false
hub_model_id: Alphatao/d233361e-a60b-4716-9cd1-c06404238b41
hub_repo: null
hub_strategy: null
hub_token: null
learning_rate: 0.0002
load_best_model_at_end: true
load_in_4bit: false
load_in_8bit: false
local_rank: null
logging_steps: 1
lora_alpha: 128
lora_dropout: 0.1
lora_fan_in_fan_out: null
lora_model_dir: null
lora_r: 64
lora_target_linear: true
lora_target_modules:
- q_proj
- k_proj
- v_proj
- o_proj
lr_scheduler: cosine
max_grad_norm: 1.0
max_steps: 7680
micro_batch_size: 4
mlflow_experiment_name: /tmp/4af3f7c1fa5610ea_train_data.json
model_type: AutoModelForCausalLM
num_epochs: 2
optimizer: adamw_bnb_8bit
output_dir: miner_id_24
pad_to_sequence_len: true
resume_from_checkpoint: null
s2_attention: null
sample_packing: false
save_steps: 100
sequence_len: 1024
strict: false
tf32: true
tokenizer_type: AutoTokenizer
train_on_inputs: false
trust_remote_code: true
val_set_size: 0.045018682753342636
wandb_entity: null
wandb_mode: online
wandb_name: 1798553a-3812-4302-9a96-9f20992e85cb
wandb_project: Gradients-On-Demand
wandb_run: your_name
wandb_runid: 1798553a-3812-4302-9a96-9f20992e85cb
warmup_steps: 10
weight_decay: 0.0
xformers_attention: null

d233361e-a60b-4716-9cd1-c06404238b41

This model is a fine-tuned version of katuni4ka/tiny-random-qwen1.5-moe on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 11.7379

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0002
  • train_batch_size: 4
  • eval_batch_size: 4
  • seed: 42
  • gradient_accumulation_steps: 8
  • total_train_batch_size: 32
  • optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_steps: 10
  • training_steps: 6630

Training results

Training Loss Epoch Step Validation Loss
11.9386 0.0003 1 11.9363
11.8365 0.0302 100 11.8407
11.8103 0.0603 200 11.8085
11.797 0.0905 300 11.7974
11.7911 0.1207 400 11.7903
11.7862 0.1508 500 11.7848
11.7865 0.1810 600 11.7808
11.7987 0.2112 700 11.7781
11.784 0.2414 800 11.7752
11.7833 0.2715 900 11.7730
11.7675 0.3017 1000 11.7709
11.7851 0.3319 1100 11.7690
11.7597 0.3620 1200 11.7674
11.7693 0.3922 1300 11.7657
11.7708 0.4224 1400 11.7640
11.7505 0.4525 1500 11.7627
11.7645 0.4827 1600 11.7610
11.7602 0.5129 1700 11.7595
11.7658 0.5430 1800 11.7580
11.7688 0.5732 1900 11.7562
11.7588 0.6034 2000 11.7547
11.7459 0.6336 2100 11.7533
11.774 0.6637 2200 11.7521
11.7575 0.6939 2300 11.7512
11.7576 0.7241 2400 11.7503
11.7534 0.7542 2500 11.7491
11.7671 0.7844 2600 11.7483
11.7611 0.8146 2700 11.7476
11.7464 0.8447 2800 11.7469
11.759 0.8749 2900 11.7463
11.771 0.9051 3000 11.7452
11.7354 0.9352 3100 11.7448
11.7581 0.9654 3200 11.7442
11.7636 0.9956 3300 11.7439
11.8293 1.0259 3400 11.7432
12.0921 1.0561 3500 11.7428
11.8367 1.0862 3600 11.7425
11.4115 1.1164 3700 11.7421
11.6317 1.1466 3800 11.7416
11.3068 1.1768 3900 11.7411
11.5171 1.2069 4000 11.7410
11.88 1.2371 4100 11.7407
11.7468 1.2673 4200 11.7403
12.3395 1.2974 4300 11.7402
12.6814 1.3276 4400 11.7399
11.6404 1.3578 4500 11.7396
11.8672 1.3879 4600 11.7394
11.3736 1.4181 4700 11.7392
11.9053 1.4483 4800 11.7390
11.2669 1.4784 4900 11.7389
11.574 1.5086 5000 11.7388
11.2534 1.5388 5100 11.7386
11.4932 1.5690 5200 11.7385
11.7849 1.5991 5300 11.7384
11.632 1.6293 5400 11.7383
11.4767 1.6595 5500 11.7382
11.985 1.6896 5600 11.7381
11.9087 1.7198 5700 11.7381
12.0167 1.7500 5800 11.7380
11.9729 1.7801 5900 11.7379
11.4693 1.8103 6000 11.7379
11.4057 1.8405 6100 11.7379
12.4109 1.8706 6200 11.7379
12.0206 1.9008 6300 11.7379
11.5193 1.9310 6400 11.7379
11.6339 1.9612 6500 11.7379
11.7818 1.9913 6600 11.7379

Framework versions

  • PEFT 0.13.2
  • Transformers 4.46.0
  • Pytorch 2.5.0+cu124
  • Datasets 3.0.1
  • Tokenizers 0.20.1
Downloads last month
6
Inference Providers NEW
This model is not currently available via any of the supported Inference Providers.
The model cannot be deployed to the HF Inference API: The model has no pipeline_tag.

Model tree for Alphatao/d233361e-a60b-4716-9cd1-c06404238b41

Adapter
(244)
this model