See axolotl config
axolotl version: 0.4.1
adapter: lora
base_model: katuni4ka/tiny-random-qwen1.5-moe
bf16: true
chat_template: llama3
dataset_prepared_path: null
datasets:
- data_files:
- 4af3f7c1fa5610ea_train_data.json
ds_type: json
format: custom
path: /workspace/input_data/4af3f7c1fa5610ea_train_data.json
type:
field_input: input
field_instruction: instruction
field_output: output
format: '{instruction} {input}'
no_input_format: '{instruction}'
system_format: '{system}'
system_prompt: ''
debug: null
device_map:
? ''
: 0,1,2,3,4,5,6,7
early_stopping_patience: 2
eval_max_new_tokens: 128
eval_steps: 100
eval_table_size: null
flash_attention: true
gradient_accumulation_steps: 8
gradient_checkpointing: true
group_by_length: false
hub_model_id: Alphatao/d233361e-a60b-4716-9cd1-c06404238b41
hub_repo: null
hub_strategy: null
hub_token: null
learning_rate: 0.0002
load_best_model_at_end: true
load_in_4bit: false
load_in_8bit: false
local_rank: null
logging_steps: 1
lora_alpha: 128
lora_dropout: 0.1
lora_fan_in_fan_out: null
lora_model_dir: null
lora_r: 64
lora_target_linear: true
lora_target_modules:
- q_proj
- k_proj
- v_proj
- o_proj
lr_scheduler: cosine
max_grad_norm: 1.0
max_steps: 7680
micro_batch_size: 4
mlflow_experiment_name: /tmp/4af3f7c1fa5610ea_train_data.json
model_type: AutoModelForCausalLM
num_epochs: 2
optimizer: adamw_bnb_8bit
output_dir: miner_id_24
pad_to_sequence_len: true
resume_from_checkpoint: null
s2_attention: null
sample_packing: false
save_steps: 100
sequence_len: 1024
strict: false
tf32: true
tokenizer_type: AutoTokenizer
train_on_inputs: false
trust_remote_code: true
val_set_size: 0.045018682753342636
wandb_entity: null
wandb_mode: online
wandb_name: 1798553a-3812-4302-9a96-9f20992e85cb
wandb_project: Gradients-On-Demand
wandb_run: your_name
wandb_runid: 1798553a-3812-4302-9a96-9f20992e85cb
warmup_steps: 10
weight_decay: 0.0
xformers_attention: null
d233361e-a60b-4716-9cd1-c06404238b41
This model is a fine-tuned version of katuni4ka/tiny-random-qwen1.5-moe on the None dataset. It achieves the following results on the evaluation set:
- Loss: 11.7379
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- gradient_accumulation_steps: 8
- total_train_batch_size: 32
- optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 10
- training_steps: 6630
Training results
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
11.9386 | 0.0003 | 1 | 11.9363 |
11.8365 | 0.0302 | 100 | 11.8407 |
11.8103 | 0.0603 | 200 | 11.8085 |
11.797 | 0.0905 | 300 | 11.7974 |
11.7911 | 0.1207 | 400 | 11.7903 |
11.7862 | 0.1508 | 500 | 11.7848 |
11.7865 | 0.1810 | 600 | 11.7808 |
11.7987 | 0.2112 | 700 | 11.7781 |
11.784 | 0.2414 | 800 | 11.7752 |
11.7833 | 0.2715 | 900 | 11.7730 |
11.7675 | 0.3017 | 1000 | 11.7709 |
11.7851 | 0.3319 | 1100 | 11.7690 |
11.7597 | 0.3620 | 1200 | 11.7674 |
11.7693 | 0.3922 | 1300 | 11.7657 |
11.7708 | 0.4224 | 1400 | 11.7640 |
11.7505 | 0.4525 | 1500 | 11.7627 |
11.7645 | 0.4827 | 1600 | 11.7610 |
11.7602 | 0.5129 | 1700 | 11.7595 |
11.7658 | 0.5430 | 1800 | 11.7580 |
11.7688 | 0.5732 | 1900 | 11.7562 |
11.7588 | 0.6034 | 2000 | 11.7547 |
11.7459 | 0.6336 | 2100 | 11.7533 |
11.774 | 0.6637 | 2200 | 11.7521 |
11.7575 | 0.6939 | 2300 | 11.7512 |
11.7576 | 0.7241 | 2400 | 11.7503 |
11.7534 | 0.7542 | 2500 | 11.7491 |
11.7671 | 0.7844 | 2600 | 11.7483 |
11.7611 | 0.8146 | 2700 | 11.7476 |
11.7464 | 0.8447 | 2800 | 11.7469 |
11.759 | 0.8749 | 2900 | 11.7463 |
11.771 | 0.9051 | 3000 | 11.7452 |
11.7354 | 0.9352 | 3100 | 11.7448 |
11.7581 | 0.9654 | 3200 | 11.7442 |
11.7636 | 0.9956 | 3300 | 11.7439 |
11.8293 | 1.0259 | 3400 | 11.7432 |
12.0921 | 1.0561 | 3500 | 11.7428 |
11.8367 | 1.0862 | 3600 | 11.7425 |
11.4115 | 1.1164 | 3700 | 11.7421 |
11.6317 | 1.1466 | 3800 | 11.7416 |
11.3068 | 1.1768 | 3900 | 11.7411 |
11.5171 | 1.2069 | 4000 | 11.7410 |
11.88 | 1.2371 | 4100 | 11.7407 |
11.7468 | 1.2673 | 4200 | 11.7403 |
12.3395 | 1.2974 | 4300 | 11.7402 |
12.6814 | 1.3276 | 4400 | 11.7399 |
11.6404 | 1.3578 | 4500 | 11.7396 |
11.8672 | 1.3879 | 4600 | 11.7394 |
11.3736 | 1.4181 | 4700 | 11.7392 |
11.9053 | 1.4483 | 4800 | 11.7390 |
11.2669 | 1.4784 | 4900 | 11.7389 |
11.574 | 1.5086 | 5000 | 11.7388 |
11.2534 | 1.5388 | 5100 | 11.7386 |
11.4932 | 1.5690 | 5200 | 11.7385 |
11.7849 | 1.5991 | 5300 | 11.7384 |
11.632 | 1.6293 | 5400 | 11.7383 |
11.4767 | 1.6595 | 5500 | 11.7382 |
11.985 | 1.6896 | 5600 | 11.7381 |
11.9087 | 1.7198 | 5700 | 11.7381 |
12.0167 | 1.7500 | 5800 | 11.7380 |
11.9729 | 1.7801 | 5900 | 11.7379 |
11.4693 | 1.8103 | 6000 | 11.7379 |
11.4057 | 1.8405 | 6100 | 11.7379 |
12.4109 | 1.8706 | 6200 | 11.7379 |
12.0206 | 1.9008 | 6300 | 11.7379 |
11.5193 | 1.9310 | 6400 | 11.7379 |
11.6339 | 1.9612 | 6500 | 11.7379 |
11.7818 | 1.9913 | 6600 | 11.7379 |
Framework versions
- PEFT 0.13.2
- Transformers 4.46.0
- Pytorch 2.5.0+cu124
- Datasets 3.0.1
- Tokenizers 0.20.1
- Downloads last month
- 6
Inference Providers
NEW
This model is not currently available via any of the supported Inference Providers.
The model cannot be deployed to the HF Inference API:
The model has no pipeline_tag.
Model tree for Alphatao/d233361e-a60b-4716-9cd1-c06404238b41
Base model
katuni4ka/tiny-random-qwen1.5-moe