Built with Axolotl

See axolotl config

axolotl version: 0.4.1

adapter: lora
base_model: EleutherAI/gpt-neo-125m
bf16: true
chat_template: llama3
dataset_prepared_path: null
datasets:
- data_files:
  - aa838734bbefd9c8_train_data.json
  ds_type: json
  format: custom
  path: /workspace/input_data/aa838734bbefd9c8_train_data.json
  type:
    field_instruction: prompt
    field_output: GEITje-7B-ultra
    format: '{instruction}'
    no_input_format: '{instruction}'
    system_format: '{system}'
    system_prompt: ''
debug: null
device_map:
  ? ''
  : 0,1,2,3,4,5,6,7
early_stopping_patience: 2
eval_max_new_tokens: 128
eval_steps: 100
eval_table_size: null
flash_attention: false
gradient_accumulation_steps: 8
gradient_checkpointing: true
group_by_length: false
hub_model_id: Alphatao/4ce2ceca-17a8-49c5-83c2-35618600ca7f
hub_repo: null
hub_strategy: null
hub_token: null
learning_rate: 0.0002
load_best_model_at_end: true
load_in_4bit: false
load_in_8bit: false
local_rank: null
logging_steps: 1
lora_alpha: 32
lora_dropout: 0.05
lora_fan_in_fan_out: null
lora_model_dir: null
lora_r: 16
lora_target_linear: true
lora_target_modules: null
lr_scheduler: cosine
max_grad_norm: 1.0
max_steps: 4140
micro_batch_size: 4
mlflow_experiment_name: /tmp/aa838734bbefd9c8_train_data.json
model_type: AutoModelForCausalLM
num_epochs: 2
optimizer: adamw_bnb_8bit
output_dir: miner_id_24
pad_to_sequence_len: true
resume_from_checkpoint: null
s2_attention: null
sample_packing: false
save_steps: 100
sequence_len: 1024
special_tokens:
  pad_token: <|endoftext|>
strict: false
tf32: true
tokenizer_type: AutoTokenizer
train_on_inputs: false
trust_remote_code: true
val_set_size: 0.04
wandb_entity: null
wandb_mode: online
wandb_name: 0130bc26-f4a9-49f9-b382-a5b971eeaf04
wandb_project: Gradients-On-Demand
wandb_run: your_name
wandb_runid: 0130bc26-f4a9-49f9-b382-a5b971eeaf04
warmup_steps: 10
weight_decay: 0.0
xformers_attention: null

4ce2ceca-17a8-49c5-83c2-35618600ca7f

This model is a fine-tuned version of EleutherAI/gpt-neo-125m on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 2.2814

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0002
  • train_batch_size: 4
  • eval_batch_size: 4
  • seed: 42
  • gradient_accumulation_steps: 8
  • total_train_batch_size: 32
  • optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_steps: 10
  • training_steps: 3002

Training results

Training Loss Epoch Step Validation Loss
22.3516 0.0007 1 2.7369
20.2093 0.0666 100 2.5747
19.7446 0.1333 200 2.5223
20.6209 0.1999 300 2.4892
20.299 0.2666 400 2.4635
19.2732 0.3332 500 2.4406
19.7515 0.3998 600 2.4214
18.9969 0.4665 700 2.4035
19.396 0.5331 800 2.3888
18.8607 0.5998 900 2.3739
18.908 0.6664 1000 2.3621
18.5906 0.7330 1100 2.3504
18.9578 0.7997 1200 2.3409
19.0391 0.8663 1300 2.3319
18.6685 0.9329 1400 2.3235
15.9064 0.9996 1500 2.3170
16.0333 1.0664 1600 2.3104
17.8283 1.1330 1700 2.3052
18.3232 1.1997 1800 2.3006
16.2907 1.2663 1900 2.2966
20.2129 1.3329 2000 2.2936
17.9803 1.3996 2100 2.2905
17.2894 1.4662 2200 2.2879
18.2833 1.5329 2300 2.2861
16.9763 1.5995 2400 2.2844
18.0936 1.6661 2500 2.2834
17.6034 1.7328 2600 2.2823
17.8223 1.7994 2700 2.2819
18.5859 1.8661 2800 2.2816
17.2502 1.9327 2900 2.2815
17.3237 1.9993 3000 2.2814

Framework versions

  • PEFT 0.13.2
  • Transformers 4.46.0
  • Pytorch 2.5.0+cu124
  • Datasets 3.0.1
  • Tokenizers 0.20.1
Downloads last month
0
Inference Providers NEW
This model is not currently available via any of the supported Inference Providers.
The model cannot be deployed to the HF Inference API: The model has no pipeline_tag.

Model tree for Alphatao/4ce2ceca-17a8-49c5-83c2-35618600ca7f

Adapter
(159)
this model