Built with Axolotl

See axolotl config

axolotl version: 0.4.1

adapter: lora
base_model: unsloth/Llama-3.2-3B
bf16: true
chat_template: llama3
dataset_prepared_path: null
datasets:
- data_files:
  - 5284e565a80f1175_train_data.json
  ds_type: json
  format: custom
  path: /workspace/input_data/5284e565a80f1175_train_data.json
  type:
    field_input: Complex_CoT
    field_instruction: Question
    field_output: Response
    format: '{instruction} {input}'
    no_input_format: '{instruction}'
    system_format: '{system}'
    system_prompt: ''
debug: null
device_map:
  ? ''
  : 0,1,2,3,4,5,6,7
early_stopping_patience: 2
eval_max_new_tokens: 128
eval_steps: 100
eval_table_size: null
flash_attention: true
gradient_accumulation_steps: 8
gradient_checkpointing: true
group_by_length: false
hub_model_id: Alphatao/2195b42e-55a3-4d53-8953-df1e1b9bc67f
hub_repo: null
hub_strategy: null
hub_token: null
learning_rate: 0.0002
load_best_model_at_end: true
load_in_4bit: false
load_in_8bit: false
local_rank: null
logging_steps: 1
lora_alpha: 32
lora_dropout: 0.05
lora_fan_in_fan_out: null
lora_model_dir: null
lora_r: 16
lora_target_linear: true
lora_target_modules:
- q_proj
- k_proj
- v_proj
- o_proj
- down_proj
- up_proj
lr_scheduler: cosine
max_grad_norm: 1.0
max_steps: 1122
micro_batch_size: 4
mlflow_experiment_name: /tmp/5284e565a80f1175_train_data.json
model_type: AutoModelForCausalLM
num_epochs: 2
optimizer: adamw_bnb_8bit
output_dir: miner_id_24
pad_to_sequence_len: true
resume_from_checkpoint: null
s2_attention: null
sample_packing: false
save_steps: 100
sequence_len: 2048
strict: false
tf32: true
tokenizer_type: AutoTokenizer
train_on_inputs: false
trust_remote_code: true
val_set_size: 0.05
wandb_entity: null
wandb_mode: online
wandb_name: 992ec895-1f75-4a0a-a06b-75880a82fff7
wandb_project: Gradients-On-Demand
wandb_run: your_name
wandb_runid: 992ec895-1f75-4a0a-a06b-75880a82fff7
warmup_steps: 10
weight_decay: 0.0
xformers_attention: null

2195b42e-55a3-4d53-8953-df1e1b9bc67f

This model is a fine-tuned version of unsloth/Llama-3.2-3B on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.7690

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0002
  • train_batch_size: 4
  • eval_batch_size: 4
  • seed: 42
  • gradient_accumulation_steps: 8
  • total_train_batch_size: 32
  • optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_steps: 10
  • training_steps: 1122

Training results

Training Loss Epoch Step Validation Loss
1.064 0.0014 1 1.2040
0.9431 0.1371 100 0.8307
0.6877 0.2742 200 0.8106
0.7727 0.4112 300 0.7981
0.839 0.5483 400 0.7886
0.8113 0.6854 500 0.7816
0.8437 0.8225 600 0.7765
0.83 0.9596 700 0.7711
0.5437 1.0966 800 0.7719
0.8655 1.2337 900 0.7704
0.6449 1.3708 1000 0.7692
0.7251 1.5079 1100 0.7690

Framework versions

  • PEFT 0.13.2
  • Transformers 4.46.0
  • Pytorch 2.5.0+cu124
  • Datasets 3.0.1
  • Tokenizers 0.20.1
Downloads last month
6
Inference Providers NEW
This model is not currently available via any of the supported Inference Providers.
The model cannot be deployed to the HF Inference API: The model has no pipeline_tag.

Model tree for Alphatao/2195b42e-55a3-4d53-8953-df1e1b9bc67f

Adapter
(413)
this model