Lumina-Next-SFT

The Lumina-Next-SFT is a Next-DiT model containing 2B parameters and utilizes Gemma-2B as the text encoder, enhanced through high-quality supervised fine-tuning (SFT).

Our generative model has Next-DiT as the backbone, the text encoder is the Gemma 2B model, and the VAE uses a version of sdxl fine-tuned by stabilityai.

paper

hero

๐Ÿ“ฐ News

  • [2024-06-08] ๐ŸŽ‰๐ŸŽ‰๐ŸŽ‰ We have released the Lumina-Next-SFT model.

  • [2024-05-28] We updated the Lumina-Next-T2I model to support 2K Resolution image generation.

  • [2024-05-16] We have converted the .pth weights to .safetensors weights. Please pull the latest code to use demo.py for inference.

  • [2024-05-12] We release the next version of Lumina-T2I, called Lumina-Next-T2I for faster and lower memory usage image generation model.

๐ŸŽฎ Model Zoo

More checkpoints of our model will be released soon~

Resolution Next-DiT Parameter Text Encoder Prediction Download URL
1024 2B Gemma-2B Rectified Flow hugging face

Installation

Before installation, ensure that you have a working nvcc

# The command should work and show the same version number as in our case. (12.1 in our case).
nvcc --version

On some outdated distros (e.g., CentOS 7), you may also want to check that a late enough version of gcc is available

# The command should work and show a version of at least 6.0.
# If not, consult distro-specific tutorials to obtain a newer version or build manually.
gcc --version

Downloading Lumina-T2X repo from GitHub:

git clone https://github.com/Alpha-VLLM/Lumina-T2X

1. Create a conda environment and install PyTorch

Note: You may want to adjust the CUDA version according to your driver version.

conda create -n Lumina_T2X -y
conda activate Lumina_T2X
conda install python=3.11 pytorch==2.1.0 torchvision==0.16.0 torchaudio==2.1.0 pytorch-cuda=12.1 -c pytorch -c nvidia -y

2. Install dependencies

pip install diffusers fairscale accelerate tensorboard transformers gradio torchdiffeq click

or you can use

cd lumina_next_t2i
pip install -r requirements.txt

3. Install flash-attn

pip install flash-attn --no-build-isolation

4. Install nvidia apex (optional)

While Apex can improve efficiency, it is not a must to make Lumina-T2X work.

Note that Lumina-T2X works smoothly with either:

  • Apex not installed at all; OR
  • Apex successfully installed with CUDA and C++ extensions.

However, it will fail when:

  • A Python-only build of Apex is installed.

If the error No module named 'fused_layer_norm_cuda' appears, it typically means you are using a Python-only build of Apex. To resolve this, please run pip uninstall apex, and Lumina-T2X should then function correctly.

You can clone the repo and install following the official guidelines (note that we expect a full build, i.e., with CUDA and C++ extensions)

pip install ninja
git clone https://github.com/NVIDIA/apex
cd apex
# if pip >= 23.1 (ref: https://pip.pypa.io/en/stable/news/#v23-1) which supports multiple `--config-settings` with the same key... 
pip install -v --disable-pip-version-check --no-cache-dir --no-build-isolation --config-settings "--build-option=--cpp_ext" --config-settings "--build-option=--cuda_ext" ./
# otherwise
pip install -v --disable-pip-version-check --no-cache-dir --no-build-isolation --global-option="--cpp_ext" --global-option="--cuda_ext" ./

Inference

To ensure that our generative model is ready to use right out of the box, we provide a user-friendly CLI program and a locally deployable Web Demo site.

CLI

  1. Install Lumina-Next-T2I
pip install -e .
  1. Prepare the pre-trained model

โญโญ (Recommended) you can use huggingface_cli to download our model:

huggingface-cli download --resume-download Alpha-VLLM/Lumina-Next-SFT --local-dir /path/to/ckpt

or using git for cloning the model you want to use:

git clone https://huggingface.co/Alpha-VLLM/Lumina-Next-T2I
  1. Setting your personal inference configuration

Update your own personal inference settings to generate different styles of images, checking config/infer/config.yaml for detailed settings. Detailed config structure:

/path/to/ckpt should be a directory containing consolidated*.pth and model_args.pth

- settings:

  model:
    ckpt: ""
    ckpt_lm: ""
    token: ""

  transport:
    path_type: "Linear"             # option: ["Linear", "GVP", "VP"]
    prediction: "velocity"          # option: ["velocity", "score", "noise"]
    loss_weight: "velocity"         # option: [None, "velocity", "likelihood"]
    sample_eps: 0.1
    train_eps: 0.2

  ode:
    atol: 1e-6                      # Absolute tolerance
    rtol: 1e-3                      # Relative tolerance
    reverse: false                  # option: true or false
    likelihood: false               # option: true or false

  infer:
      resolution: "1024x1024"       # option: ["1024x1024", "512x2048", "2048x512", "(Extrapolation) 1664x1664", "(Extrapolation) 1024x2048", "(Extrapolation) 2048x1024"]
      num_sampling_steps: 60        # range: 1-1000
      cfg_scale: 4.                 # range: 1-20
      solver: "euler"               # option: ["euler", "dopri5", "dopri8"]
      t_shift: 4                    # range: 1-20 (int only)
      scaling_method: "Time-aware"  # option: ["Time-aware", "None"]
      scale_watershed: 0.3          # range: 0.0-1.0
      proportional_attn: true       # option: true or false
      seed: 0                       # rnage: any number
  1. Run with CLI

inference command:

lumina_next infer -c <config_path> <caption_here> <output_dir>

e.g. Demo command:

cd lumina_next_t2i
lumina_next infer -c "config/infer/settings.yaml" "a snowman of ..." "./outputs"

Web Demo

To host a local gradio demo for interactive inference, run the following command:

# `/path/to/ckpt` should be a directory containing `consolidated*.pth` and `model_args.pth`

# default
python -u demo.py --ckpt "/path/to/ckpt"

# the demo by default uses bf16 precision. to switch to fp32:
python -u demo.py --ckpt "/path/to/ckpt" --precision fp32 

# use ema model
python -u demo.py --ckpt "/path/to/ckpt" --ema
Downloads last month

-

Downloads are not tracked for this model. How to track
Inference Providers NEW
This model is not currently available via any of the supported Inference Providers.
The model cannot be deployed to the HF Inference API: The model has no library tag.

Space using Alpha-VLLM/Lumina-Next-SFT 1

Collection including Alpha-VLLM/Lumina-Next-SFT