About:
A fine-tuned version of Deepseek-R1-Distilled-Qwen-1.5B that surpasses the performance of OpenAI’s o1-preview with just 1.5B parameters on popular math evaluations.
Special thanks to Agentica for fine-tuning this version of Deepseek-R1-Distilled-Qwen-1.5B. More information about it can be found here:
https://huggingface.co/agentica-org/DeepScaleR-1.5B-Preview. (Base Model)
- Converted to MLX format for improved performance on Apple Silicon Macs (M1,M2,M3,M4).
- No quantization done, for the full 1.78B parameter model.
- If you want a smaller size (quantized), see the mlx models below.
Other Types/Quants:
Link | Type | Size | Notes |
---|---|---|---|
[MLX] (https://huggingface.co/AlejandroOlmedo/DeepScaleR-1.5B-Preview-mlx) | Full | 3.57 GB | Best Quality |
[MLX] (https://huggingface.co/AlejandroOlmedo/DeepScaleR-1.5B-Preview-8bit-mlx) | 8-bit | 1.90 GB | Better Quality |
[MLX] (https://huggingface.co/AlejandroOlmedo/DeepScaleR-1.5B-Preview-6bit-mlx) | 6-bit | 1.46 GB | Good Quality |
[MLX] (https://huggingface.co/AlejandroOlmedo/DeepScaleR-1.5B-Preview-4bit-mlx) | 4-bit | 1.01 GB | Bad Quality |
AlejandroOlmedo/DeepScaleR-1.5B-Preview-mlx
The Model AlejandroOlmedo/DeepScaleR-1.5B-Preview-mlx was converted to MLX format from agentica-org/DeepScaleR-1.5B-Preview using mlx-lm version 0.21.4.
Use with mlx
pip install mlx-lm
from mlx_lm import load, generate
model, tokenizer = load("AlejandroOlmedo/DeepScaleR-1.5B-Preview-mlx")
prompt = "hello"
if tokenizer.chat_template is not None:
messages = [{"role": "user", "content": prompt}]
prompt = tokenizer.apply_chat_template(
messages, add_generation_prompt=True
)
response = generate(model, tokenizer, prompt=prompt, verbose=True)
- Downloads last month
- 26
Inference Providers
NEW
This model is not currently available via any of the supported Inference Providers.
Model tree for AlejandroOlmedo/DeepScaleR-1.5B-Preview-mlx
Base model
deepseek-ai/DeepSeek-R1-Distill-Qwen-1.5B
Finetuned
agentica-org/DeepScaleR-1.5B-Preview