metadata
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- generated_from_trainer
- dataset_size:1602
- loss:CosineSimilarityLoss
base_model: sentence-transformers/all-mpnet-base-v2
widget:
- source_sentence: >-
Has there been any recent discussion on the trend of women choosing to
become mothers later in life?
sentences:
- >-
British Columbia, Ontario, New Brunswick, Nova Scotia, and Prince Edward
Island have fully implemented universal hearing screening programs.
- >-
If the first readings exceed the maximum allowable difference,
measurements are taken for a second and, if necessary, a third time.
- >-
In recent years, practices have shifted and these professionals are now
able to observe, assess, and consult on the child’s program at the
centre rather than in an office visit.
- source_sentence: >-
Where can I find more information on facilitating extra-provincial ward
adoptions in British Columbia?
sentences:
- >-
You can refer to Practice Directive #2021-01 for more information on
facilitating extra-provincial ward adoptions in British Columbia.
- >-
No, a Care Plan is not required if the child/youth has no special
service needs.
- >-
Licensed ECEC programs may fall under the responsibility of one or more
ministries and departments, including education, health, family, and/or
social services.
- source_sentence: What should be done if there are minor differences in openness requests?
sentences:
- >-
If there are minor differences, it is advised to try to reach an
acceptable compromise in a meeting.
- >-
Yes, the adoption can be completed in B.C. even if the child is from
another province. However, the originating provincial or territorial
child welfare authority is responsible for finalizing the adoption.
- >-
The new standards establish the breastfed child as the normative model
for child growth and development.
- source_sentence: >-
Does the federal government in Canada manage Early Childhood Education and
Care (ECEC)?
sentences:
- You can call a friend or relative to ask for help.
- >-
You can start introducing common food allergens to your baby as they
begin eating solid foods. It's best to introduce them one at a time.
- >-
A search of the Parents' Registry should be requested at the time the
child or youth is registered with the Adoption and Permanency Branch.
- source_sentence: How can I order a birth certificate in British Columbia?
sentences:
- >-
The Hague Convention is an international treaty that sets standards to
ensure that the best interests of children and youth are protected.
- >-
Only the consents of the Director of Adoption and the child/youth aged
12 or over are required.
- >-
The L value is -0.4488, the M value is 15.2759, and the S value is
0.08380.
pipeline_tag: sentence-similarity
library_name: sentence-transformers
metrics:
- pearson_cosine
- spearman_cosine
model-index:
- name: SentenceTransformer based on sentence-transformers/all-mpnet-base-v2
results:
- task:
type: semantic-similarity
name: Semantic Similarity
dataset:
name: pregnancy val
type: pregnancy_val
metrics:
- type: pearson_cosine
value: 0.9454219117248748
name: Pearson Cosine
- type: spearman_cosine
value: 0.8647267521805166
name: Spearman Cosine
SentenceTransformer based on sentence-transformers/all-mpnet-base-v2
This is a sentence-transformers model finetuned from sentence-transformers/all-mpnet-base-v2. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Model Description
- Model Type: Sentence Transformer
- Base model: sentence-transformers/all-mpnet-base-v2
- Maximum Sequence Length: 384 tokens
- Output Dimensionality: 768 dimensions
- Similarity Function: Cosine Similarity
Model Sources
- Documentation: Sentence Transformers Documentation
- Repository: Sentence Transformers on GitHub
- Hugging Face: Sentence Transformers on Hugging Face
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 384, 'do_lower_case': False}) with Transformer model: MPNetModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("sentence_transformers_model_id")
# Run inference
sentences = [
'How can I order a birth certificate in British Columbia?',
'Only the consents of the Director of Adoption and the child/youth aged 12 or over are required.',
'The L value is -0.4488, the M value is 15.2759, and the S value is 0.08380.',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
Evaluation
Metrics
Semantic Similarity
- Dataset:
pregnancy_val
- Evaluated with
EmbeddingSimilarityEvaluator
Metric | Value |
---|---|
pearson_cosine | 0.9454 |
spearman_cosine | 0.8647 |
Training Details
Training Dataset
Unnamed Dataset
- Size: 1,602 training samples
- Columns:
sentence_0
,sentence_1
, andlabel
- Approximate statistics based on the first 1000 samples:
sentence_0 sentence_1 label type string string float details - min: 7 tokens
- mean: 16.16 tokens
- max: 34 tokens
- min: 9 tokens
- mean: 28.61 tokens
- max: 75 tokens
- min: 0.0
- mean: 0.51
- max: 1.0
- Samples:
sentence_0 sentence_1 label What kind of hearing screening programs do other provinces and territories in Canada have?
Unless an adoption placement has already been secured and a brief interim placement with a caregiver is required, the child should be 6 months of age or younger.
0.0
Are there resources available for children with learning disabilities in early childhood programs?
Yes, most PTs dedicate resources, programs or staff to support children with learning disabilities and other special needs.
1.0
What is parental leave?
Parental leave is a type of benefit that allows parents to take time off work after the birth or adoption of a child. The text mentions it but does not provide specific details about the duration or requirements in Canada.
1.0
- Loss:
CosineSimilarityLoss
with these parameters:{ "loss_fct": "torch.nn.modules.loss.MSELoss" }
Training Hyperparameters
Non-Default Hyperparameters
eval_strategy
: stepsper_device_train_batch_size
: 16per_device_eval_batch_size
: 16multi_dataset_batch_sampler
: round_robin
All Hyperparameters
Click to expand
overwrite_output_dir
: Falsedo_predict
: Falseeval_strategy
: stepsprediction_loss_only
: Trueper_device_train_batch_size
: 16per_device_eval_batch_size
: 16per_gpu_train_batch_size
: Noneper_gpu_eval_batch_size
: Nonegradient_accumulation_steps
: 1eval_accumulation_steps
: Nonetorch_empty_cache_steps
: Nonelearning_rate
: 5e-05weight_decay
: 0.0adam_beta1
: 0.9adam_beta2
: 0.999adam_epsilon
: 1e-08max_grad_norm
: 1num_train_epochs
: 3max_steps
: -1lr_scheduler_type
: linearlr_scheduler_kwargs
: {}warmup_ratio
: 0.0warmup_steps
: 0log_level
: passivelog_level_replica
: warninglog_on_each_node
: Truelogging_nan_inf_filter
: Truesave_safetensors
: Truesave_on_each_node
: Falsesave_only_model
: Falserestore_callback_states_from_checkpoint
: Falseno_cuda
: Falseuse_cpu
: Falseuse_mps_device
: Falseseed
: 42data_seed
: Nonejit_mode_eval
: Falseuse_ipex
: Falsebf16
: Falsefp16
: Falsefp16_opt_level
: O1half_precision_backend
: autobf16_full_eval
: Falsefp16_full_eval
: Falsetf32
: Nonelocal_rank
: 0ddp_backend
: Nonetpu_num_cores
: Nonetpu_metrics_debug
: Falsedebug
: []dataloader_drop_last
: Falsedataloader_num_workers
: 0dataloader_prefetch_factor
: Nonepast_index
: -1disable_tqdm
: Falseremove_unused_columns
: Truelabel_names
: Noneload_best_model_at_end
: Falseignore_data_skip
: Falsefsdp
: []fsdp_min_num_params
: 0fsdp_config
: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}fsdp_transformer_layer_cls_to_wrap
: Noneaccelerator_config
: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}deepspeed
: Nonelabel_smoothing_factor
: 0.0optim
: adamw_torchoptim_args
: Noneadafactor
: Falsegroup_by_length
: Falselength_column_name
: lengthddp_find_unused_parameters
: Noneddp_bucket_cap_mb
: Noneddp_broadcast_buffers
: Falsedataloader_pin_memory
: Truedataloader_persistent_workers
: Falseskip_memory_metrics
: Trueuse_legacy_prediction_loop
: Falsepush_to_hub
: Falseresume_from_checkpoint
: Nonehub_model_id
: Nonehub_strategy
: every_savehub_private_repo
: Nonehub_always_push
: Falsegradient_checkpointing
: Falsegradient_checkpointing_kwargs
: Noneinclude_inputs_for_metrics
: Falseinclude_for_metrics
: []eval_do_concat_batches
: Truefp16_backend
: autopush_to_hub_model_id
: Nonepush_to_hub_organization
: Nonemp_parameters
:auto_find_batch_size
: Falsefull_determinism
: Falsetorchdynamo
: Noneray_scope
: lastddp_timeout
: 1800torch_compile
: Falsetorch_compile_backend
: Nonetorch_compile_mode
: Nonedispatch_batches
: Nonesplit_batches
: Noneinclude_tokens_per_second
: Falseinclude_num_input_tokens_seen
: Falseneftune_noise_alpha
: Noneoptim_target_modules
: Nonebatch_eval_metrics
: Falseeval_on_start
: Falseuse_liger_kernel
: Falseeval_use_gather_object
: Falseaverage_tokens_across_devices
: Falseprompts
: Nonebatch_sampler
: batch_samplermulti_dataset_batch_sampler
: round_robin
Training Logs
Epoch | Step | pregnancy_val_spearman_cosine |
---|---|---|
1.0 | 101 | 0.8647 |
Framework Versions
- Python: 3.13.1
- Sentence Transformers: 3.4.1
- Transformers: 4.49.0
- PyTorch: 2.6.0
- Accelerate: 1.4.0
- Datasets: 3.3.2
- Tokenizers: 0.21.0
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}