File size: 9,727 Bytes
8abb864 1c77a32 f0eab92 8abb864 712dcac 1c77a32 712dcac 8abb864 712dcac 2023d0d 712dcac f0eab92 712dcac b25a04c 2023d0d 712dcac 12e69b4 712dcac 12e69b4 82d6aac 6f40462 e35d6d2 12e69b4 2023d0d baa1126 12e69b4 baa1126 12e69b4 baa1126 fdcb41f 12e69b4 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 |
---
license: mit
language:
- en
tags:
- audio
- text-to-speech
- matcha-tts
---
# Matcha-TTS CommonVoice EN001
[you can test variation models](https://huggingface.co/spaces/Akjava/matcha-tts-onnx-benchmarks) | [Github Demo](https://akjava.github.io/Matcha-TTS-Japanese/matcha_tts_speak_en001.html)
## Source Audio
https://commonvoice.mozilla.org/en/datasets
Common Voice Corpus 1
I called audios 42da7f26(head-audio-id)_290(files) EN001
(No plan to include audios in this repo)
## Any Good point?
LJSpeech is much better quality,but it's female voice.This one is men.
VCTK 109 voices are similar quality,but that is ODC-By License.
This audio is just under MIT more easy to continue training or something.
however I recommend you use VCTK,ODC-By License is not so problem.I'm going to create new voices with this in future.
## How to Train
Train with IPA text(this folk)
https://github.com/akjava/Matcha-TTS-Japanese
check this repo's config files.
however there are no audio copy tools.TODO later
## Files Info
### checkpoints
Matcha-TTS checkpoint - epoch seems big but train with only 290 audios
Sadly I lost between 3599 - 4499 checkpoints.I'm sorry.
As I see Training metrics.
6399 seems overfitting,however my english listening skill is poor and I cant evaluate it.
### ONNX
[github codes](https://github.com/akjava/Matcha-TTS-Japanese/tree/main/examples) - see sourcecode
[github Page](https://akjava.github.io/Matcha-TTS-Japanese/) - Test Onnx Example
onnx simplified loading speed is now 1.5 times faster.
```
from onnxsim import simplify
import onnx
model = onnx.load("en001_6399_T2.onnx")
model_simp, check = simplify(model)
onnx.save(model_simp, "en001_6399_T2_simplify.onnx")
```
timesteps is default(5) ,small time steps ;The infer speed is somewhat faster, but the quality is lower.
If you need original onnx do like official way
```
python -m matcha.onnx.export checkpoint_epoch=5699.ckpt en001_5699t2.onnx --vocoder-name hifigan_T2_v1 --n-timesteps 5 --vocoder-checkpoint generator_v1
python -m matcha.onnx.export checkpoint_epoch=5699.ckpt en001_5699.onnx --vocoder-name hifigan_univ_v1 --n-timesteps 5 --vocoder-checkpoint g_02500000
```
- T2 means Vocoder is hifigan_T2_v1
- Unif means Voder is hifigan_univ_v1
you can quantize this onnx,but 3 times smaller, but 4-5 times slower,that why I did't include that.
```
from onnxruntime.quantization import quantize_dynamic, QuantType
quantized_model = quantize_dynamic(src_model_path, dst_model_path, weight_type=QuantType.QUInt8)
```
To use onnx need something,below is old sample
```
const _pad = "_";
const _punctuation = ";:,.!?¡¿—…\"«»“” ";
const _letters = "ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz";
const _letters_ipa = "ɑɐɒæɓʙβɔɕçɗɖðʤəɘɚɛɜɝɞɟʄɡɠɢʛɦɧħɥʜɨɪʝɭɬɫɮʟɱɯɰŋɳɲɴøɵɸθœɶʘɹɺɾɻʀʁɽʂʃʈʧʉʊʋⱱʌɣɤʍχʎʏʑʐʒʔʡʕʢǀǁǂǃˈˌːˑʼʴʰʱʲʷˠˤ˞↓↑→↗↘'̩'ᵻ";
// below code called Spread syntax
const Symbols = [_pad, ..._punctuation, ..._letters, ..._letters_ipa];
const SpaceId = Symbols.indexOf(' ');
const symbolToId = {};
const idToSymbol = {};
// initialize symbolToId and idToSymbol
for (let i = 0; i < Symbols.length; i++) {
symbolToId[Symbols[i]] = i;
idToSymbol[i] = Symbols[i];
}
class MatchaOnnx {
constructor() {
}
async load_model(model_path,options={}){
this.session = await ort.InferenceSession.create(model_path,options);
}
get_output_names_html(){
if (typeof this.session=='undefined'){
return null
}
let outputNamesString = '[outputs]<br>';
const outputNames = this.session.outputNames;
for (let outputName of outputNames) {
console.log(outputName)
outputNamesString+=outputName+"<br>"
}
return outputNamesString.trim()
}
get_input_names_html(){
if (typeof this.session=='undefined'){
return null
}
let inputNamesString = '[Inputs]<br>';
const inputNames = this.session.inputNames;
for (let inputName of inputNames) {
console.log(inputName)
inputNamesString+=inputName+"<br>"
}
return inputNamesString.trim()
}
processText(text) {
const x = this.intersperse(this.textToSequence(text));
const x_phones = this.sequenceToText(x);
const textList = [];
for (let i = 1; i < x_phones.length; i += 2) {
textList.push(x_phones[i]);
}
return {
x: x,
x_length: x.length,
x_phones: x_phones,
x_phones_label: textList.join(""),
};
}
basicCleaners2(text, lowercase = false) {
if (lowercase) {
text = text.toLowerCase();
}
text = text.replace(/\s+/g, " ");
return text;
}
textToSequence(text) {
const sequenceList = [];
const clean_text = this.basicCleaners2(text);
for (let i = 0; i < clean_text.length; i++) {
const symbol = clean_text[i];
sequenceList.push(symbolToId[symbol]);
}
return sequenceList;
}
intersperse(sequence, item = 0) {
const sequenceList = [item];
for (let i = 0; i < sequence.length; i++) {
sequenceList.push(sequence[i]);
sequenceList.push(item);
}
return sequenceList;
}
sequenceToText(sequence) {
const textList = [];
for (let i = 0; i < sequence.length; i++) {
const symbol = idToSymbol[sequence[i]];
textList.push(symbol);
}
return textList.join("");
}
async infer(text, temperature, speed) {
console.log(this.session)
const dic = this.processText(text);
console.log(`x:${dic.x.join(", ")}`);
console.log(`x_length:${dic.x_length}`);
console.log(`x_phones_label:${dic.x_phones_label}`);
// Prepare input tensors (assuming your ONNX Runtime library uses similar syntax)
//const x_tensor = new this.session.Tensor('long', dic.x, [1, dic.x.length]);
//const x_length_tensor = new this.session.Tensor('long', [dic.x.length], [1]);
//const scales_tensor = new this.session.Tensor('float', [temperature, speed], [2]);
const dataX = new BigInt64Array(dic.x.length)
for (let i = 0; i < dic.x.length; i++) {
//console.log(dic.x[i])
dataX[i] = BigInt(dic.x[i]); // Convert each number to a BigInt
}
const data_x_length = new BigInt64Array(1)
data_x_length[0] = BigInt(dic.x_length)
//const dataX = Int32Array.from([dic.x_length])
const tensorX = new ort.Tensor('int64', dataX, [1, dic.x.length]);
// const data_x_length = Int32Array.from([dic.x_length])
const tensor_x_length = new ort.Tensor('int64', data_x_length, [1]);
const data_scale = Float32Array.from( [temperature, speed])
const tensor_scale = new ort.Tensor('float32', data_scale, [2]);
// Run inference
const output = await this.session.run({
x: tensorX,
x_lengths: tensor_x_length,
scales: tensor_scale,
});
console.log(output)
// Extract output (assuming your ONNX Runtime library uses similar syntax)
const wav_array = output.wav.data;
console.log(wav_array[0]);
console.log(wav_array.length);
const x_lengths_array = output.wav_lengths.data;
console.log(x_lengths_array.join(", "));
return wav_array;
}
}
```
convert to wav
```
function webWavPlay(f32array){
blob = float32ArrayToWav(f32array)
url = createObjectUrlFromBlob(blob)
console.log(url)
playAudioFromUrl(url)
}
function createObjectUrlFromBlob(blob) {
const url = URL.createObjectURL(blob);
return url;
}
function playAudioFromUrl(url) {
const audio = new Audio(url);
audio.play().catch(error => console.error('Failed to play audio:', error));
}
//I copied
//https://huggingface.co/spaces/k2-fsa/web-assembly-tts-sherpa-onnx-de/blob/main/app-tts.js
// this function is copied/modified from
// https://gist.github.com/meziantou/edb7217fddfbb70e899e
function float32ArrayToWav(floatSamples, sampleRate=22050) {
let samples = new Int16Array(floatSamples.length);
for (let i = 0; i < samples.length; ++i) {
let s = floatSamples[i];
if (s >= 1)
s = 1;
else if (s <= -1)
s = -1;
samples[i] = s * 32767;
}
let buf = new ArrayBuffer(44 + samples.length * 2);
var view = new DataView(buf);
// http://soundfile.sapp.org/doc/WaveFormat/
// F F I R
view.setUint32(0, 0x46464952, true); // chunkID
view.setUint32(4, 36 + samples.length * 2, true); // chunkSize
// E V A W
view.setUint32(8, 0x45564157, true); // format
//
// t m f
view.setUint32(12, 0x20746d66, true); // subchunk1ID
view.setUint32(16, 16, true); // subchunk1Size, 16 for PCM
view.setUint32(20, 1, true); // audioFormat, 1 for PCM
view.setUint16(22, 1, true); // numChannels: 1 channel
view.setUint32(24, sampleRate, true); // sampleRate
view.setUint32(28, sampleRate * 2, true); // byteRate
view.setUint16(32, 2, true); // blockAlign
view.setUint16(34, 16, true); // bitsPerSample
view.setUint32(36, 0x61746164, true); // Subchunk2ID
view.setUint32(40, samples.length * 2, true); // subchunk2Size
let offset = 44;
for (let i = 0; i < samples.length; ++i) {
view.setInt16(offset, samples[i], true);
offset += 2;
}
return new Blob([view], {type: 'audio/wav'});
}
```
### Audio
I cut with VAD tools and denoise with resemble-enhance
|