Akjava commited on
Commit
baa1126
·
verified ·
1 Parent(s): 15543a2

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +17 -1
README.md CHANGED
@@ -20,7 +20,7 @@ https://github.com/akjava/Matcha-TTS-Japanese
20
  Matcha-TTS checkpoint - epoch seems big but train with only 290 audios
21
  ### ONNX
22
 
23
- onnx simplified
24
  ```
25
  from onnxsim import simplify
26
  import onnx
@@ -30,9 +30,25 @@ model_simp, check = simplify(model)
30
 
31
  onnx.save(model_simp, "en001_6399_T2_simplify.onnx")
32
  ```
 
 
 
 
 
 
 
 
 
33
  - T2 means Vocoder is hifigan_T2_v1
34
  - Unif means Voder is hifigan_univ_v1
35
 
 
 
 
 
 
 
 
36
  To use onnx need something,I'll add sample code later
37
  ### Audio
38
  I cut with VAD tools and denoise with resemble-enhance
 
20
  Matcha-TTS checkpoint - epoch seems big but train with only 290 audios
21
  ### ONNX
22
 
23
+ onnx simplified loading speed is now 1.5 times faster.
24
  ```
25
  from onnxsim import simplify
26
  import onnx
 
30
 
31
  onnx.save(model_simp, "en001_6399_T2_simplify.onnx")
32
  ```
33
+
34
+ timesteps is default(5) ,small time steps ;The infer speed is somewhat faster, but the quality is lower.
35
+
36
+ If you need original onnx do like official way
37
+ ```
38
+ python -m matcha.onnx.export checkpoint_epoch=5699.ckpt en001_5699t2.onnx --vocoder-name hifigan_T2_v1 --n-timesteps 5 --vocoder-checkpoint generator_v1
39
+ python -m matcha.onnx.export checkpoint_epoch=5699.ckpt en001_5699.onnx --vocoder-name hifigan_univ_v1 --n-timesteps 5 --vocoder-checkpoint g_02500000
40
+ ```
41
+
42
  - T2 means Vocoder is hifigan_T2_v1
43
  - Unif means Voder is hifigan_univ_v1
44
 
45
+ you can quantize this onnx,but 3 times smaller, but 4-5 times slower,that why I did't include that.
46
+ ```
47
+ from onnxruntime.quantization import quantize_dynamic, QuantType
48
+ quantized_model = quantize_dynamic(src_model_path, dst_model_path, weight_type=QuantType.QUInt8)
49
+ ```
50
+
51
+
52
  To use onnx need something,I'll add sample code later
53
  ### Audio
54
  I cut with VAD tools and denoise with resemble-enhance