|
--- |
|
license: apache-2.0 |
|
base_model: |
|
- Ultralytics/YOLO11 |
|
pipeline_tag: object-detection |
|
tags: |
|
- pytorch |
|
--- |
|
|
|
## YOLOv11n-Face-Detection |
|
|
|
A lightweight face detection model based on YOLO architecture ([YOLOv11 nano](https://huggingface.co/Ultralytics/YOLO11)), trained for 225 epochs on the WIDERFACE dataset. |
|
|
|
It achieves the following results on the evaluation set: |
|
|
|
``` |
|
==================== Results ==================== |
|
Easy Val AP: 0.9420471677096086 |
|
Medium Val AP: 0.9210357271019756 |
|
Hard Val AP: 0.8099848364072022 |
|
================================================= |
|
``` |
|
|
|
YOLO results: |
|
|
|
 |
|
|
|
[Confusion matrix](https://huggingface.co/AdamCodd/YOLOv11-face-detection/blob/main/confusion-matrix.png): |
|
|
|
[[23577 2878] |
|
|
|
[16098 0]] |
|
|
|
### Usage |
|
```python |
|
from huggingface_hub import hf_hub_download |
|
from ultralytics import YOLO |
|
|
|
model_path = hf_hub_download(repo_id="AdamCodd/YOLOv11n-face-detection", filename="model.pt") |
|
model = YOLO(model_path) |
|
|
|
results = model.predict("/path/to/your/image", save=True) # saves the result in runs/detect/predict |
|
``` |
|
|
|
### Limitations |
|
|
|
- Performance may vary in extreme lighting conditions |
|
- Best suited for frontal and slightly angled faces |
|
- Optimal performance for faces occupying >20 pixels |