paper code demo model

Built upon Ovis-U1, Ovis-Image is a 7B text-to-image model specifically optimized for high-quality text rendering, designed to operate efficiently under stringent computational constraints.


The overall architecture of Ovis-Image (cf. Fig.2 in our report).

πŸ† Highlights

  • Strong text rendering at a compact 7B scale: Ovis-Image is a 7B text-to-image model that delivers text rendering quality comparable to much larger 20B-class systems such as Qwen-Image and competitive with leading closed-source models like GPT4o in text-centric scenarios, while remaining small enough to run on widely accessible hardware.
  • High fidelity on text-heavy, layout-sensitive prompts: The model excels on prompts that demand tight alignment between linguistic content and rendered typography (e.g., posters, banners, logos, UI mockups, infographics), producing legible, correctly spelled, and semantically consistent text across diverse fonts, sizes, and aspect ratios without compromising overall visual quality.
  • Efficiency and deployability: With its 7B parameter budget and streamlined architecture, Ovis-Image fits on a single high-end GPU with moderate memory, supports low-latency interactive use, and scales to batch production serving, bringing near–frontier text rendering to applications where tens-of-billions–parameter models are impractical.

✨ Showcase

Here are some examples demonstrating the capabilities of Ovis-Image.

Ovis-Image examples

πŸ› οΈ Inference

Inference with Diffusers

First, install the diffusers library with support for Ovis-Image.

pip install git+https://github.com/DoctorKey/diffusers.git@ovis-image

Next, use the OvisImagePipeline to generate the image.

import torch
from diffusers import OvisImagePipeline

pipe = OvisImagePipeline.from_pretrained("AIDC-AI/Ovis-Image-7B", torch_dtype=torch.bfloat16)
pipe.to("cuda")
prompt = "A creative 3D artistic render where the text \"OVIS-IMAGE\" is written in a bold, expressive handwritten brush style using thick, wet oil paint. The paint is a mix of vibrant rainbow colors (red, blue, yellow) swirling together like toothpaste or impasto art. You can see the ridges of the brush bristles and the glossy, wet texture of the paint. The background is a clean artist's canvas. Dynamic lighting creates soft shadows behind the floating paint strokes. Colorful, expressive, tactile texture, 4k detail."
image = pipe(prompt, negative_prompt="", num_inference_steps=50, true_cfg_scale=5.0).images[0]
image.save("ovis_image.png")

Inference with Pytorch

Ovis-Image has been tested with Python 3.10, Torch 2.6.0, and Transformers 4.57.1. For a full list of package dependencies, please see requirements.txt.

git clone [email protected]:AIDC-AI/Ovis-Image.git
conda create -n ovis-image python=3.10 -y
conda activate ovis-image
cd Ovis-Image
pip install -r requirements.txt
pip install -e .

For text-to-image, please run

python ovis_image/test.py \
    --model_path AIDC-AI/Ovis-Image-7B/ovis_image.safetensors \
    --vae_path AIDC-AI/Ovis-Image-7B/ae.safetensors \
    --ovis_path AIDC-AI/Ovis-Image-7B/Ovis2.5-2B \
    --image_size 1024 \
    --denoising_steps 50 \
    --cfg_scale 5.0 \
    --prompt "A creative 3D artistic render where the text \"OVIS-IMAGE\" is written in a bold, expressive handwritten brush style using thick, wet oil paint. The paint is a mix of vibrant rainbow colors (red, blue, yellow) swirling together like toothpaste or impasto art. You can see the ridges of the brush bristles and the glossy, wet texture of the paint. The background is a clean artist's canvas. Dynamic lighting creates soft shadows behind the floating paint strokes. Colorful, expressive, tactile texture, 4k detail." \

Alternatively, you can try Ovis-Image directly in your browser on Hugging Face Space

πŸ“Š Performance

Evaluation of text rendering ability on CVTG-2K.

Model #Params. WA (2 regions) WA (3 regions) WA (4 regions) WA (5 regions) WA (average) NED↑ CLIPScore↑
Seedream 3.0 - 0.6282 0.5962 0.6043 0.5610 0.5924 0.8537 0.7821
GPT4o - 0.8779 0.8659 0.8731 0.8218 0.8569 0.9478 0.7982
SD3.5 Large 11B+8B 0.7293 0.6825 0.6574 0.5940 0.6548 0.8470 0.7797
RAG-Diffusion 11B+12B 0.4388 0.3316 0.2116 0.1910 0.2648 0.4498 0.7797
FLUX.1-dev 11B+12B 0.6089 0.5531 0.4661 0.4316 0.4965 0.6879 0.7401
TextCrafter 11B+12B 0.7628 0.7628 0.7406 0.6977 0.7370 0.8679 0.7868
Qwen-Image 7B+20B 0.8370 0.8364 0.8313 0.8158 0.8288 0.9116 0.8017
Ovis-Image 2B+7B 0.9248 0.9239 0.9180 0.9166 0.9200 0.9695 0.8368

Evaluation of text rendering ability on LongText-Bench.

Model #Params. LongText-Bench-EN LongText-Bench-ZN
Kolors 2.0 - 0.258 0.329
GPT4o - 0.956 0.619
Seedream 3.0 - 0.896 0.878
OmniGen2 3B+4B 0.561 0.059
Janus-Pro 7B 0.019 0.006
BLIP3-o 7B+1B 0.021 0.018
FLUX.1-dev 11B+12B 0.607 0.005
BAGEL 7B+7B 0.373 0.310
HiDream-I1-Full 11B+17B 0.543 0.024
Qwen-Image 7B+20B 0.943 0.946
Ovis-Image 2B+7B 0.922 0.964

Evaluation of text-to-image generation ability on DPG-Bench.

Model #Params. Global Entity Attribute Relation Other Overall
Seedream 3.0 - 94.31 92.65 91.36 92.78 88.24 88.27
GPT4o - 88.89 88.94 89.84 92.63 90.96 85.15
Ovis-U1 2B+1B 82.37 90.08 88.68 93.35 85.20 83.72
OmniGen2 3B+4B 88.81 88.83 90.18 89.37 90.27 83.57
Janus-Pro 7B 86.90 88.90 89.40 89.32 89.48 84.19
BAGEL 7B+7B 88.94 90.37 91.29 90.82 88.67 85.07
HiDream-I1-Full 11B+17B 76.44 90.22 89.48 93.74 91.83 85.89
UniWorld-V1 7B+12B 83.64 88.39 88.44 89.27 87.22 81.38
Qwen-Image 7B+20B 91.32 91.56 92.02 94.31 92.73 88.32
Ovis-Image 2B+7B 82.37 92.38 90.42 93.98 91.20 86.59

Evaluation of text-to-image generation ability on GenEval.

Model #Params. Single object Two object Counting Colors Position Attribute binding Overall
Seedream 3.0 - 0.99 0.96 0.91 0.93 0.47 0.80 0.84
GPT4o - 0.99 0.92 0.85 0.92 0.75 0.61 0.84
Ovis-U1 2B+1B 0.98 0.98 0.90 0.92 0.79 0.75 0.89
OmniGen2 3B+4B 1.00 0.95 0.64 0.88 0.55 0.76 0.80
Janus-Pro 7B 0.99 0.89 0.59 0.90 0.79 0.66 0.80
BAGEL 7B+7B 0.99 0.94 0.81 0.88 0.64 0.63 0.82
HiDream-I1-Full 11B+17B 1.00 0.98 0.79 0.91 0.60 0.72 0.83
UniWorld-V1 7B+12B 0.99 0.93 0.79 0.89 0.49 0.70 0.80
Qwen-Image 7B+20B 0.99 0.92 0.89 0.88 0.76 0.77 0.87
Ovis-Image 2B+7B 1.00 0.97 0.76 0.86 0.67 0.80 0.84

Evaluation of text-to-image generation ability on OneIG-EN.

Model #Params. Alignment Text Reasoning Style Diversity Overall
Kolors 2.0 - 0.820 0.427 0.262 0.360 0.300 0.434
Imagen4 - 0.857 0.805 0.338 0.377 0.199 0.515
Seedream 3.0 - 0.818 0.865 0.275 0.413 0.277 0.530
GPT4o - 0.851 0.857 0.345 0.462 0.151 0.533
Ovis-U1 2B+1B 0.816 0.034 0.226 0.443 0.191 0.342
CogView4 6B 0.786 0.641 0.246 0.353 0.205 0.446
Janus-Pro 7B 0.553 0.001 0.139 0.276 0.365 0.267
OmniGen2 3B+4B 0.804 0.680 0.271 0.377 0.242 0.475
BLIP3-o 7B+1B 0.711 0.013 0.223 0.361 0.229 0.307
FLUX.1-dev 11B+12B 0.786 0.523 0.253 0.368 0.238 0.434
BAGEL 7B+7B 0.769 0.244 0.173 0.367 0.251 0.361
BAGEL+CoT 7B+7B 0.793 0.020 0.206 0.390 0.209 0.324
HiDream-I1-Full 11B+17B 0.829 0.707 0.317 0.347 0.186 0.477
HunyuanImage-2.1 7B+17B 0.835 0.816 0.299 0.355 0.127 0.486
Qwen-Image 7B+20B 0.882 0.891 0.306 0.418 0.197 0.539
Ovis-Image 2B+7B 0.858 0.914 0.308 0.386 0.186 0.530

Evaluation of text-to-image generation ability on OneIG-ZN.

Model #Params. Alignment Text Reasoning Style Diversity Overall
Kolors 2.0 - 0.738 0.502 0.226 0.331 0.333 0.426
Seedream 3.0 - 0.793 0.928 0.281 0.397 0.243 0.528
GPT4o - 0.812 0.650 0.300 0.449 0.159 0.474
CogView4 6B 0.700 0.193 0.236 0.348 0.214 0.338
Janus-Pro 7B 0.324 0.148 0.104 0.264 0.358 0.240
BLIP3-o 7B+1B 0.608 0.092 0.213 0.369 0.233 0.303
BAGEL 7B+7B 0.672 0.365 0.186 0.357 0.268 0.370
BAGEL+CoT 7B+7B 0.719 0.127 0.219 0.385 0.197 0.329
HiDream-I1-Full 11B+17B 0.620 0.205 0.256 0.304 0.300 0.337
HunyuanImage-2.1 7B+17B 0.775 0.896 0.271 0.348 0.114 0.481
Qwen-Image 7B+20B 0.825 0.963 0.267 0.405 0.279 0.548
Ovis-Image 2B+7B 0.805 0.961 0.273 0.368 0.198 0.521

πŸ“š Citation

If you find Ovis-Image useful for your research or applications, please cite our technical report:

@misc{wang2025ovis_image,
  title={Ovis-Image Technical Report}, 
  author={Wang, Guo-Hua and Cao, Liangfu and Cui, Tianyu and Fu, Minghao and Chen, Xiaohao and Zhan, Pengxin and Zhao, Jianshan and Li, Lan and Fu, Bowen and Liu, Jiaqi and Chen, Qing-Guo},
  howpublished={\url{https://github.com/AIDC-AI/Ovis-Image}},
  year={2025}
}

πŸ™ Acknowledgments

The code is built upon Ovis and FLUX. We thank their authors for open-sourcing their great work.

πŸ“„ License

This project is licensed under the Apache License, Version 2.0 (SPDX-License-Identifier: Apache-2.0).

🚨 Disclaimer

We used compliance checking algorithms during the training process, to ensure the compliance of the trained model(s) to the best of our ability. Due to complex data and the diversity of language model usage scenarios, we cannot guarantee that the model is completely free of copyright issues or improper content. If you believe anything infringes on your rights or generates improper content, please contact us, and we will promptly address the matter.

πŸ”₯ We are hiring!

We are looking for both interns and full-time researchers to join our team, focusing on multimodal understanding, generation, reasoning, AI agents, and unified multimodal models. If you are interested in exploring these exciting areas, please reach out to us at [email protected].

Downloads last month
64
Inference Providers NEW
This model isn't deployed by any Inference Provider. πŸ™‹ Ask for provider support

Model tree for AIDC-AI/Ovis-Image-7B

Base model

AIDC-AI/Ovis2.5-2B
Finetuned
(2)
this model

Space using AIDC-AI/Ovis-Image-7B 1

Collection including AIDC-AI/Ovis-Image-7B