ModernBERT-base-mask-finetuned-shakespeare
This model is a fine-tuned version of answerdotai/ModernBERT-base on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 2.2340
How to use
You can use this model directly with a pipeline for text generation. This example generates a different sequence each time it's run:
import torch
from transformers import pipeline
from pprint import pprint
pipe = pipeline(
"fill-mask",
model="2nji/ModernBERT-base-mask-finetuned-shakespeare",
torch_dtype=torch.bfloat16,
)
input_text = "Thou [MASK] on [MASK]."
results = pipe(input_text)
pprint(results)
<!-- [[{'score': 0.71875,
'sequence': '[CLS]Thou art on[MASK].[SEP]',
'token': 1445,
'token_str': ' art'},
{'score': 0.1416015625,
'sequence': '[CLS]Thou hast on[MASK].[SEP]',
'token': 16579,
'token_str': ' hast'},
{'score': 0.014892578125,
'sequence': '[CLS]Thou be on[MASK].[SEP]',
'token': 320,
'token_str': ' be'},
{'score': 0.00701904296875,
'sequence': '[CLS]Thou Art on[MASK].[SEP]',
'token': 3975,
'token_str': ' Art'},
{'score': 0.0042724609375,
'sequence': '[CLS]Thou call on[MASK].[SEP]',
'token': 1067,
'token_str': ' call'}],
[{'score': 0.1767578125,
'sequence': "[CLS]Thou[MASK] on't.[SEP]",
'token': 626,
'token_str': "'t"},
{'score': 0.146484375,
'sequence': '[CLS]Thou[MASK] on me.[SEP]',
'token': 479,
'token_str': ' me'},
{'score': 0.0419921875,
'sequence': '[CLS]Thou[MASK] on it.[SEP]',
'token': 352,
'token_str': ' it'},
{'score': 0.0419921875,
'sequence': '[CLS]Thou[MASK] on earth.[SEP]',
'token': 6149,
'token_str': ' earth'},
{'score': 0.03955078125,
'sequence': '[CLS]Thou[MASK] on him.[SEP]',
'token': 779,
'token_str': ' him'}]] -->
Training and evaluation data
This model was finetuned using the the Shakespare_corpus Dataset
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- num_epochs: 3.0
Training results
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
No log | 1.0 | 197 | 2.3128 |
No log | 2.0 | 394 | 2.2150 |
2.3002 | 3.0 | 591 | 2.2395 |
Framework versions
- Transformers 4.48.3
- Pytorch 2.5.1+cu124
- Datasets 3.3.2
- Tokenizers 0.21.0
- Downloads last month
- 34
Model tree for 2nji/ModernBERT-base-mask-finetuned-shakespeare
Base model
answerdotai/ModernBERT-base