zzen0008 commited on
Commit
4326053
·
1 Parent(s): 968ce86

Initial commit

Browse files
.gitattributes CHANGED
@@ -32,3 +32,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
32
  *.zip filter=lfs diff=lfs merge=lfs -text
33
  *.zst filter=lfs diff=lfs merge=lfs -text
34
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
32
  *.zip filter=lfs diff=lfs merge=lfs -text
33
  *.zst filter=lfs diff=lfs merge=lfs -text
34
  *tfevents* filter=lfs diff=lfs merge=lfs -text
35
+ replay.mp4 filter=lfs diff=lfs merge=lfs -text
README.md ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - AntBulletEnv-v0
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: A2C
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: AntBulletEnv-v0
16
+ type: AntBulletEnv-v0
17
+ metrics:
18
+ - type: mean_reward
19
+ value: 1949.04 +/- 128.86
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # **A2C** Agent playing **AntBulletEnv-v0**
25
+ This is a trained model of a **A2C** agent playing **AntBulletEnv-v0**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
27
+
28
+ ## Usage (with Stable-baselines3)
29
+ TODO: Add your code
30
+
31
+
32
+ ```python
33
+ from stable_baselines3 import ...
34
+ from huggingface_sb3 import load_from_hub
35
+
36
+ ...
37
+ ```
a2c-AntBulletEnv-v0.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ba0bd85e57d0daf549c0050eb9033f1341d4595b8196a9496b9a083055541718
3
+ size 130449
a2c-AntBulletEnv-v0/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 1.8.0a2
a2c-AntBulletEnv-v0/data ADDED
@@ -0,0 +1,106 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7f393aee1b80>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f393aee1c10>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f393aee1ca0>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f393aee1d30>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7f393aee1dc0>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7f393aee1e50>",
13
+ "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f393aee1ee0>",
14
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f393aee1f70>",
15
+ "_predict": "<function ActorCriticPolicy._predict at 0x7f393aee4040>",
16
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f393aee40d0>",
17
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f393aee4160>",
18
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f393aee41f0>",
19
+ "__abstractmethods__": "frozenset()",
20
+ "_abc_impl": "<_abc._abc_data object at 0x7f393aee0ec0>"
21
+ },
22
+ "verbose": 1,
23
+ "policy_kwargs": {
24
+ ":type:": "<class 'dict'>",
25
+ ":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu",
26
+ "log_std_init": -2,
27
+ "ortho_init": false,
28
+ "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>",
29
+ "optimizer_kwargs": {
30
+ "alpha": 0.99,
31
+ "eps": 1e-05,
32
+ "weight_decay": 0
33
+ }
34
+ },
35
+ "observation_space": {
36
+ ":type:": "<class 'gym.spaces.box.Box'>",
37
+ ":serialized:": "gAWVZwIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWcAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgKSxyFlIwBQ5R0lFKUjARoaWdolGgSKJZwAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UaApLHIWUaBV0lFKUjA1ib3VuZGVkX2JlbG93lGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLHIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaCFLHIWUaBV0lFKUjApfbnBfcmFuZG9tlE51Yi4=",
38
+ "dtype": "float32",
39
+ "_shape": [
40
+ 28
41
+ ],
42
+ "low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]",
43
+ "high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]",
44
+ "bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]",
45
+ "bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]",
46
+ "_np_random": null
47
+ },
48
+ "action_space": {
49
+ ":type:": "<class 'gym.spaces.box.Box'>",
50
+ ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAv5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAP5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAQEBAQEBAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAEBAQEBAQEBlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
51
+ "dtype": "float32",
52
+ "_shape": [
53
+ 8
54
+ ],
55
+ "low": "[-1. -1. -1. -1. -1. -1. -1. -1.]",
56
+ "high": "[1. 1. 1. 1. 1. 1. 1. 1.]",
57
+ "bounded_below": "[ True True True True True True True True]",
58
+ "bounded_above": "[ True True True True True True True True]",
59
+ "_np_random": null
60
+ },
61
+ "n_envs": 8,
62
+ "num_timesteps": 2000000,
63
+ "_total_timesteps": 2000000,
64
+ "_num_timesteps_at_start": 0,
65
+ "seed": null,
66
+ "action_noise": null,
67
+ "start_time": 1678433852124548298,
68
+ "learning_rate": 0.00096,
69
+ "tensorboard_log": null,
70
+ "lr_schedule": {
71
+ ":type:": "<class 'function'>",
72
+ ":serialized:": "gAWV3QIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMVS9ob21lL3p6L0RPRC9EZWVwUkwvZW52L2xpYi9weXRob24zLjkvc2l0ZS1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuCQwIAAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjFUvaG9tZS96ei9ET0QvRGVlcFJML2Vudi9saWIvcHl0aG9uMy45L3NpdGUtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9PdRBNVR1phZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
73
+ },
74
+ "_last_obs": {
75
+ ":type:": "<class 'numpy.ndarray'>",
76
+ ":serialized:": "gAWV9QMAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJaAAwAAAAAAAMS+Cb+wtJo/LcGOvrEZpT9Ctpg/BVGcP8x6Hz0GxEm+HQwMP++unz9ifVc+i5EWP0FRmj/chlw+oDxaP7LsyL80SMg/2af0vsE6q713HHU/XTiavtqutj6rzuW92Uuvv/wOhL8UItc+l1/GPm9Wh79NO5a9y07RvVTQBj+H3r0/VFnsv3x6vb8H9yo/M4hMP33jMD9vJLK/Y07CPCa4A8BSYji/sB+6P0sJhb9HfJe97WVKvzrlPz/ttQM/3Wyxv7PS9r7j9FK+arYUv0anDkD8DoS/FCLXPvUuJcBvVoe/+ulgv27YC79IAvw+SVXHP8OJZL9UI6+/Cpy/vg3roDvBwyo/uQv1vhKREL9MMn49ixyDv/zblT9j2Po+JHh1PoxlNr+Ix2o/yUAyP7wE1r2t9jm8v7stPwPSKT7nnhhA/A6EvxQi1z71LiXAb1aHv2nDqr7aUoe+z9IHP9kWoD8O56i/7bE+PxcmL770zZu+w6p5P9GGZL/TQ5K+wDQ6v1fXk78xOKo+pvDEPYf9gz+W33O/KZknv4VAKz/EAcu+MZwmvy4o7r9dzsQ+OefqPvwOhL8UItc+l1/GPm9Wh79FCDm+gp84vWlNBT9rnIQ/WKUWwCkHBz+K1xC9ZoLTvnC5ET9PKgRAVAL6Pux2lb5WzbS/Mr2aPovkSb2mszjA8MiWv4GGCz8qYEc/gamOPBtmLj0luxlAF88sv3Z9jj/kIXg/o1AYwJdfxj5vVoe/ya4av1XzhL6h3Ac/1OrCPkyD+j6boEM/oyAPP+XfQr7hCXM/WHAVv7EDCb9V1qO/8yrlvlZ8cz+pD5K9hV2zPjlecj+b7UE/FeEjPy2sRL8rIly/ALjFvf4r2L7EhRw+/A6EvxQi1z6XX8Y+0B5yP3fWZL5rFh8+q132PrjIGj+xx1s+VCAvPwvUQj+5RTs+i0eEP6Pj+b2u2AY/tA2/v3fZdL/KsGM/aCVSvwNQgT7zk+O+OO2XP8KbMT/+K42/bM6Jv7gQHz7EQBO/vzyLPuQheD8UItc+l1/GPtAecj905Ko+n6pwP1+4kzw2orQ/B8fDPpDoST8e3h+/llv3vlldLj8DTnw/AS29Pk7BTj+Le6+/KAQOPU1ynD1a7Z69FlxKPd1Xyb8n2lW+bevdPy1K3j2TgoK/oojsvs9epb7kIXg/FCLXPpdfxj5vVoe/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksISxyGlIwBQ5R0lFKULg=="
77
+ },
78
+ "_last_episode_starts": {
79
+ ":type:": "<class 'numpy.ndarray'>",
80
+ ":serialized:": "gAWVewAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYIAAAAAAAAAAAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlC4="
81
+ },
82
+ "_last_original_obs": {
83
+ ":type:": "<class 'numpy.ndarray'>",
84
+ ":serialized:": "gAWV9QMAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJaAAwAAAAAAAAAAAACaQtY2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAXtzbvQAAAAC/tfu/AAAAAAoStD0AAAAAbprePwAAAAAgx1I8AAAAAJ9Q6z8AAAAAqOFzvQAAAAAaMeW/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAT6HptgAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgAJx+T0AAAAAtu/0vwAAAADarAy+AAAAAGpP4D8AAAAATSRlvAAAAAA8ut0/AAAAAL9VFT0AAAAAfbHdvwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAHUtpzUAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIAev/e9AAAAANFw8L8AAAAAbfPOvQAAAACVb9o/AAAAAMa5tj0AAAAAmP3sPwAAAAC0t309AAAAAHzC7r8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABoeYC2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAHXPkPAAAAAA5mvq/AAAAAHVkfL0AAAAAhN7kPwAAAABVGdu9AAAAAEQP6z8AAAAAF7IJvQAAAAA8lOi/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAC/nKNQAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgMjbGr0AAAAAP6j8vwAAAADtaxU8AAAAAFyB5T8AAAAATb6yvQAAAACufec/AAAAAEMO5r0AAAAAalT/vwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAHxhcDYAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAICRL409AAAAAAq89r8AAAAA6vMHPgAAAACSt98/AAAAANW4nz0AAAAAHq/9PwAAAACMU967AAAAAI2u8r8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACQqXS2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAm4QbPQAAAADJU9y/AAAAAFHquL0AAAAA+yoBQAAAAACOe9k9AAAAAOAw9D8AAAAAoucEPgAAAABx59i/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAE+16tgAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgHjQ0D0AAAAAt9YAwAAAAADGCG49AAAAAKmf8T8AAAAA6AqGvQAAAABTcuk/AAAAAHHXXT0AAAAApEEAwAAAAAAAAAAAAAAAAAAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksISxyGlIwBQ5R0lFKULg=="
85
+ },
86
+ "_episode_num": 0,
87
+ "use_sde": true,
88
+ "sde_sample_freq": -1,
89
+ "_current_progress_remaining": 0.0,
90
+ "ep_info_buffer": {
91
+ ":type:": "<class 'collections.deque'>",
92
+ ":serialized:": "gAWVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQJoVd55Z8ruMAWyUTegDjAF0lEdAmTGsGLUCrHV9lChoBkdAmuTKxHG0eGgHTegDaAhHQJk9rbQC0Wx1fZQoaAZHQJmm2fBeok1oB03oA2gIR0CZP8ANG3F2dX2UKGgGR0CaT1SkTHsDaAdN6ANoCEdAmUDw8bJfY3V9lChoBkdAnPzxE4Nqg2gHTegDaAhHQJlHXhsImgJ1fZQoaAZHQJk/VRIjGDNoB03oA2gIR0CZSCciGFi8dX2UKGgGR0CdG8kgfU4JaAdN6ANoCEdAmUjtP+GXX3V9lChoBkdAm0rKgElme2gHTegDaAhHQJlJg/r0J4V1fZQoaAZHQJ1j59YwIt1oB03oA2gIR0CZTLOCoS+QdX2UKGgGR0CfJrqXnhbXaAdN6ANoCEdAmVj6DCgsb3V9lChoBkdAnxyc9jgAImgHTegDaAhHQJlbBkMCtA91fZQoaAZHQJFQVXFLnLdoB03oA2gIR0CZXDYaYNRWdX2UKGgGR0CfD1VghKUWaAdN6ANoCEdAmWKSswL3K3V9lChoBkdAnfafMKTjemgHTegDaAhHQJljWTOgQH11fZQoaAZHQJ6jIAOrhitoB03oA2gIR0CZZB4Glhw3dX2UKGgGR0CfKMQb+98JaAdN6ANoCEdAmWS0uxrzoXV9lChoBkdAoJFVIK+i8GgHTegDaAhHQJln8+NcW0t1fZQoaAZHQJ6yaoP07KdoB03oA2gIR0CZdD3kPtladX2UKGgGR0Cf/PlbNbC8aAdN6ANoCEdAmXY3tOVPe3V9lChoBkdAoLriuQp4KWgHTegDaAhHQJl3WKEWZZ11fZQoaAZHQKA5TjTa0yBoB03oA2gIR0CZfWz544ZNdX2UKGgGR0Cg0Y4UFjd6aAdN6ANoCEdAmX4sQyylenV9lChoBkdAoUOG5+Ytx2gHTegDaAhHQJl+5p8F6iV1fZQoaAZHQJ+F3Him2stoB03oA2gIR0CZf3XqqwQldX2UKGgGR0Cfv0RAKOT8aAdN6ANoCEdAmYKkbgjyF3V9lChoBkdAnpdfnOjZc2gHTegDaAhHQJmOglkYoAp1fZQoaAZHQKD8JyWiUPhoB03oA2gIR0CZkHu63AmBdX2UKGgGR0CgB6WnTAnEaAdN6ANoCEdAmZGgZTAFgXV9lChoBkdAn8TmqT8pC2gHTegDaAhHQJmX00Ltu1p1fZQoaAZHQKAfufwI+ntoB03oA2gIR0CZmJWM0gr6dX2UKGgGR0Cfx7rNW2gGaAdN6ANoCEdAmZlU2Hck+3V9lChoBkdAoaFDSsr/bWgHTegDaAhHQJmZ5yIYWLx1fZQoaAZHQKAhZyxzJZJoB03oA2gIR0CZnQOAy2x6dX2UKGgGR0CgMh2ZqmCRaAdN6ANoCEdAmajnlS0jT3V9lChoBkdAnse6kyk9EGgHTegDaAhHQJmq4hje9Bd1fZQoaAZHQKBWFKlHjIdoB03oA2gIR0CZrAYtQKrrdX2UKGgGR0CYzULteD3/aAdN6ANoCEdAmbIzQiRnvnV9lChoBkdAnEcf2Xb/O2gHTegDaAhHQJmy86fapP11fZQoaAZHQKFeNj9XLeRoB03oA2gIR0CZs7ItDlYEdX2UKGgGR0CgzQms/6fraAdN6ANoCEdAmbRDodMj/3V9lChoBkdAnmuf5Lytm2gHTegDaAhHQJm3ZUlzEJl1fZQoaAZHQJd1oRL9MsZoB03oA2gIR0CZw4TdLxqgdX2UKGgGR0CXHGJNj9XLaAdN6ANoCEdAmcWShJyyU3V9lChoBkdAlooVQEZBLWgHTegDaAhHQJnGvl+3H7x1fZQoaAZHQJhiV0PpY9xoB03oA2gIR0CZzRUhV2iddX2UKGgGR0CZcO7wrlNlaAdN6ANoCEdAmc3b/wRXfnV9lChoBkdAmYqftpmEoWgHTegDaAhHQJnOnhXKbKB1fZQoaAZHQJlak1R+BpZoB03oA2gIR0CZzzLxZuAJdX2UKGgGR0CfkfRf4REnaAdN6ANoCEdAmdJatLcsUnV9lChoBkdAmLC4nfEXL2gHTegDaAhHQJnenBk7Oml1fZQoaAZHQJVzNYZEUj9oB03oA2gIR0CZ4KboKUmldX2UKGgGR0CX0BOXVsk6aAdN6ANoCEdAmeHV2q1gIHV9lChoBkdAle+xCUornWgHTegDaAhHQJnoOZlWfbt1fZQoaAZHQJKj3qQiiZhoB03oA2gIR0CZ6P+0w8GLdX2UKGgGR0CNVf8neBQOaAdN6ANoCEdAmenD3Ehq03V9lChoBkdAk6A2Pkq+amgHTegDaAhHQJnqVn27FsJ1fZQoaAZHQJNgllCkXUJoB03oA2gIR0CZ7XXTmW+odX2UKGgGR0Cc8LzfrKNiaAdN6ANoCEdAmfmEhFEy+HV9lChoBkdAnVxM2rGR3mgHTegDaAhHQJn7j05EMLF1fZQoaAZHQIfIh5Pdl/ZoB03oA2gIR0CZ/L2nsLOSdX2UKGgGR0CJ9cNRWLgoaAdN6ANoCEdAmgMMLv1DjXV9lChoBkdAm0d4vWYnfGgHTegDaAhHQJoD0CcPOIJ1fZQoaAZHQJxZuff4yoJoB03oA2gIR0CaBJRfnfVJdX2UKGgGR0CXdx5Rjz7NaAdN6ANoCEdAmgUpYxL0z3V9lChoBkdAhDHr56+nImgHTegDaAhHQJoIVf7aZhN1fZQoaAZHQJmC9nlGPPtoB03oA2gIR0CaFI47zTWodX2UKGgGR0CGPkF49ovjaAdN6ANoCEdAmhaad+Xqq3V9lChoBkdAkcCHbqQiimgHTegDaAhHQJoXyR1X/5t1fZQoaAZHQJE3ZcOby6NoB03oA2gIR0CaHh2qT8pDdX2UKGgGR0CXy8g5BC2MaAdN6ANoCEdAmh7f7SApa3V9lChoBkdAhtqmB4D9wWgHTegDaAhHQJofn3L3bmF1fZQoaAZHQJm44dxQzk9oB03oA2gIR0CaIDFev6j4dX2UKGgGR0CbFwybQTmGaAdN6ANoCEdAmiNM4xUNrnV9lChoBkdAm1m/OUt7KWgHTegDaAhHQJovTXmNiph1fZQoaAZHQJzkKMrEtNBoB03oA2gIR0CaMU+FUQ05dX2UKGgGR0CWbEsiSq2jaAdN6ANoCEdAmjJ59y925nV9lChoBkdAmVK59NN8E2gHTegDaAhHQJo4vEgntv51fZQoaAZHQJqHGBI4EOloB03oA2gIR0CaOX59mYjTdX2UKGgGR0Cak1mUGFBZaAdN6ANoCEdAmjo/C2tuDXV9lChoBkdAnVsTYI0IkmgHTegDaAhHQJo60XBP9DR1fZQoaAZHQJgH2JoCdSVoB03oA2gIR0CaPeu+AVfvdX2UKGgGR0Cb91U21lXjaAdN6ANoCEdAmknnj2i+L3V9lChoBkdAnD4s7IT4+WgHTegDaAhHQJpL7VMEidJ1fZQoaAZHQJqgGuyNXHRoB03oA2gIR0CaTRWcz67/dX2UKGgGR0CcN8l7MPjGaAdN6ANoCEdAmlNO8CgbqHV9lChoBkdAnzL/cnE2pGgHTegDaAhHQJpUD8qFyrB1fZQoaAZHQJ+mijxkNF1oB03oA2gIR0CaVNA2hqTKdX2UKGgGR0CcHGFfReC1aAdN6ANoCEdAmlVjYRNAT3V9lChoBkdAnAxf99+gDmgHTegDaAhHQJpYmD0163R1fZQoaAZHQJvE4JHAh0RoB03oA2gIR0CaZLFZPl+3dX2UKGgGR0Cem1Vfu1F6aAdN6ANoCEdAmmbEx20Re3V9lChoBkdAmP+ovWYnfGgHTegDaAhHQJpn9FZxJd11fZQoaAZHQJ6lPmMfigloB03oA2gIR0CablOBlMAWdX2UKGgGR0CeC56E8JUpaAdN6ANoCEdAmm8TqW1MNHV9lChoBkdAnhaS+tbLU2gHTegDaAhHQJpv0i/wiJR1fZQoaAZHQJ3GALiMo+hoB03oA2gIR0CacGLAYYR/dX2UKGgGR0CdwKhoM8YAaAdN6ANoCEdAmnN4Iv8IiXV9lChoBkdAoCUTe9Ba92gHTegDaAhHQJp/VcSoOx11fZQoaAZHQKCGQfTTfBNoB03oA2gIR0CagVZBcAzYdX2UKGgGR0Cey5lHz6JqaAdN6ANoCEdAmoKFeSjgynVlLg=="
93
+ },
94
+ "ep_success_buffer": {
95
+ ":type:": "<class 'collections.deque'>",
96
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
97
+ },
98
+ "_n_updates": 31250,
99
+ "n_steps": 8,
100
+ "gamma": 0.99,
101
+ "gae_lambda": 0.9,
102
+ "ent_coef": 0.0,
103
+ "vf_coef": 0.4,
104
+ "max_grad_norm": 0.5,
105
+ "normalize_advantage": false
106
+ }
a2c-AntBulletEnv-v0/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:1b76ae150103b71e6712f8ad1c79673781df10a6f05f7e651e5a35212edc2d85
3
+ size 56190
a2c-AntBulletEnv-v0/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:1c065f2cb65a5c397b5dd7db4793048644c5644fa852e162567cf5933093e8fb
3
+ size 56894
a2c-AntBulletEnv-v0/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
a2c-AntBulletEnv-v0/system_info.txt ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ - OS: Linux-5.10.0-20-amd64-x86_64-with-glibc2.31 # 1 SMP Debian 5.10.158-2 (2022-12-13)
2
+ - Python: 3.9.14
3
+ - Stable-Baselines3: 1.8.0a2
4
+ - PyTorch: 1.13.1+cu117
5
+ - GPU Enabled: True
6
+ - Numpy: 1.24.2
7
+ - Gym: 0.21.0
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f393aee1b80>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f393aee1c10>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f393aee1ca0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f393aee1d30>", "_build": "<function ActorCriticPolicy._build at 0x7f393aee1dc0>", "forward": "<function ActorCriticPolicy.forward at 0x7f393aee1e50>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f393aee1ee0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f393aee1f70>", "_predict": "<function ActorCriticPolicy._predict at 0x7f393aee4040>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f393aee40d0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f393aee4160>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f393aee41f0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7f393aee0ec0>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu", "log_std_init": -2, "ortho_init": false, "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVZwIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWcAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgKSxyFlIwBQ5R0lFKUjARoaWdolGgSKJZwAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UaApLHIWUaBV0lFKUjA1ib3VuZGVkX2JlbG93lGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLHIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaCFLHIWUaBV0lFKUjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "_shape": [28], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAv5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAP5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAQEBAQEBAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAEBAQEBAQEBlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-1. -1. -1. -1. -1. -1. -1. -1.]", "high": "[1. 1. 1. 1. 1. 1. 1. 1.]", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_np_random": null}, "n_envs": 8, "num_timesteps": 2000000, "_total_timesteps": 2000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1678433852124548298, "learning_rate": 0.00096, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWV3QIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMVS9ob21lL3p6L0RPRC9EZWVwUkwvZW52L2xpYi9weXRob24zLjkvc2l0ZS1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuCQwIAAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjFUvaG9tZS96ei9ET0QvRGVlcFJML2Vudi9saWIvcHl0aG9uMy45L3NpdGUtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9PdRBNVR1phZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWV9QMAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJaAAwAAAAAAAMS+Cb+wtJo/LcGOvrEZpT9Ctpg/BVGcP8x6Hz0GxEm+HQwMP++unz9ifVc+i5EWP0FRmj/chlw+oDxaP7LsyL80SMg/2af0vsE6q713HHU/XTiavtqutj6rzuW92Uuvv/wOhL8UItc+l1/GPm9Wh79NO5a9y07RvVTQBj+H3r0/VFnsv3x6vb8H9yo/M4hMP33jMD9vJLK/Y07CPCa4A8BSYji/sB+6P0sJhb9HfJe97WVKvzrlPz/ttQM/3Wyxv7PS9r7j9FK+arYUv0anDkD8DoS/FCLXPvUuJcBvVoe/+ulgv27YC79IAvw+SVXHP8OJZL9UI6+/Cpy/vg3roDvBwyo/uQv1vhKREL9MMn49ixyDv/zblT9j2Po+JHh1PoxlNr+Ix2o/yUAyP7wE1r2t9jm8v7stPwPSKT7nnhhA/A6EvxQi1z71LiXAb1aHv2nDqr7aUoe+z9IHP9kWoD8O56i/7bE+PxcmL770zZu+w6p5P9GGZL/TQ5K+wDQ6v1fXk78xOKo+pvDEPYf9gz+W33O/KZknv4VAKz/EAcu+MZwmvy4o7r9dzsQ+OefqPvwOhL8UItc+l1/GPm9Wh79FCDm+gp84vWlNBT9rnIQ/WKUWwCkHBz+K1xC9ZoLTvnC5ET9PKgRAVAL6Pux2lb5WzbS/Mr2aPovkSb2mszjA8MiWv4GGCz8qYEc/gamOPBtmLj0luxlAF88sv3Z9jj/kIXg/o1AYwJdfxj5vVoe/ya4av1XzhL6h3Ac/1OrCPkyD+j6boEM/oyAPP+XfQr7hCXM/WHAVv7EDCb9V1qO/8yrlvlZ8cz+pD5K9hV2zPjlecj+b7UE/FeEjPy2sRL8rIly/ALjFvf4r2L7EhRw+/A6EvxQi1z6XX8Y+0B5yP3fWZL5rFh8+q132PrjIGj+xx1s+VCAvPwvUQj+5RTs+i0eEP6Pj+b2u2AY/tA2/v3fZdL/KsGM/aCVSvwNQgT7zk+O+OO2XP8KbMT/+K42/bM6Jv7gQHz7EQBO/vzyLPuQheD8UItc+l1/GPtAecj905Ko+n6pwP1+4kzw2orQ/B8fDPpDoST8e3h+/llv3vlldLj8DTnw/AS29Pk7BTj+Le6+/KAQOPU1ynD1a7Z69FlxKPd1Xyb8n2lW+bevdPy1K3j2TgoK/oojsvs9epb7kIXg/FCLXPpdfxj5vVoe/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksISxyGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVewAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYIAAAAAAAAAAAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlC4="}, "_last_original_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWV9QMAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJaAAwAAAAAAAAAAAACaQtY2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAXtzbvQAAAAC/tfu/AAAAAAoStD0AAAAAbprePwAAAAAgx1I8AAAAAJ9Q6z8AAAAAqOFzvQAAAAAaMeW/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAT6HptgAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgAJx+T0AAAAAtu/0vwAAAADarAy+AAAAAGpP4D8AAAAATSRlvAAAAAA8ut0/AAAAAL9VFT0AAAAAfbHdvwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAHUtpzUAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIAev/e9AAAAANFw8L8AAAAAbfPOvQAAAACVb9o/AAAAAMa5tj0AAAAAmP3sPwAAAAC0t309AAAAAHzC7r8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABoeYC2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAHXPkPAAAAAA5mvq/AAAAAHVkfL0AAAAAhN7kPwAAAABVGdu9AAAAAEQP6z8AAAAAF7IJvQAAAAA8lOi/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAC/nKNQAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgMjbGr0AAAAAP6j8vwAAAADtaxU8AAAAAFyB5T8AAAAATb6yvQAAAACufec/AAAAAEMO5r0AAAAAalT/vwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAHxhcDYAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAICRL409AAAAAAq89r8AAAAA6vMHPgAAAACSt98/AAAAANW4nz0AAAAAHq/9PwAAAACMU967AAAAAI2u8r8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACQqXS2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAm4QbPQAAAADJU9y/AAAAAFHquL0AAAAA+yoBQAAAAACOe9k9AAAAAOAw9D8AAAAAoucEPgAAAABx59i/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAE+16tgAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgHjQ0D0AAAAAt9YAwAAAAADGCG49AAAAAKmf8T8AAAAA6AqGvQAAAABTcuk/AAAAAHHXXT0AAAAApEEAwAAAAAAAAAAAAAAAAAAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksISxyGlIwBQ5R0lFKULg=="}, "_episode_num": 0, "use_sde": true, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQJoVd55Z8ruMAWyUTegDjAF0lEdAmTGsGLUCrHV9lChoBkdAmuTKxHG0eGgHTegDaAhHQJk9rbQC0Wx1fZQoaAZHQJmm2fBeok1oB03oA2gIR0CZP8ANG3F2dX2UKGgGR0CaT1SkTHsDaAdN6ANoCEdAmUDw8bJfY3V9lChoBkdAnPzxE4Nqg2gHTegDaAhHQJlHXhsImgJ1fZQoaAZHQJk/VRIjGDNoB03oA2gIR0CZSCciGFi8dX2UKGgGR0CdG8kgfU4JaAdN6ANoCEdAmUjtP+GXX3V9lChoBkdAm0rKgElme2gHTegDaAhHQJlJg/r0J4V1fZQoaAZHQJ1j59YwIt1oB03oA2gIR0CZTLOCoS+QdX2UKGgGR0CfJrqXnhbXaAdN6ANoCEdAmVj6DCgsb3V9lChoBkdAnxyc9jgAImgHTegDaAhHQJlbBkMCtA91fZQoaAZHQJFQVXFLnLdoB03oA2gIR0CZXDYaYNRWdX2UKGgGR0CfD1VghKUWaAdN6ANoCEdAmWKSswL3K3V9lChoBkdAnfafMKTjemgHTegDaAhHQJljWTOgQH11fZQoaAZHQJ6jIAOrhitoB03oA2gIR0CZZB4Glhw3dX2UKGgGR0CfKMQb+98JaAdN6ANoCEdAmWS0uxrzoXV9lChoBkdAoJFVIK+i8GgHTegDaAhHQJln8+NcW0t1fZQoaAZHQJ6yaoP07KdoB03oA2gIR0CZdD3kPtladX2UKGgGR0Cf/PlbNbC8aAdN6ANoCEdAmXY3tOVPe3V9lChoBkdAoLriuQp4KWgHTegDaAhHQJl3WKEWZZ11fZQoaAZHQKA5TjTa0yBoB03oA2gIR0CZfWz544ZNdX2UKGgGR0Cg0Y4UFjd6aAdN6ANoCEdAmX4sQyylenV9lChoBkdAoUOG5+Ytx2gHTegDaAhHQJl+5p8F6iV1fZQoaAZHQJ+F3Him2stoB03oA2gIR0CZf3XqqwQldX2UKGgGR0Cfv0RAKOT8aAdN6ANoCEdAmYKkbgjyF3V9lChoBkdAnpdfnOjZc2gHTegDaAhHQJmOglkYoAp1fZQoaAZHQKD8JyWiUPhoB03oA2gIR0CZkHu63AmBdX2UKGgGR0CgB6WnTAnEaAdN6ANoCEdAmZGgZTAFgXV9lChoBkdAn8TmqT8pC2gHTegDaAhHQJmX00Ltu1p1fZQoaAZHQKAfufwI+ntoB03oA2gIR0CZmJWM0gr6dX2UKGgGR0Cfx7rNW2gGaAdN6ANoCEdAmZlU2Hck+3V9lChoBkdAoaFDSsr/bWgHTegDaAhHQJmZ5yIYWLx1fZQoaAZHQKAhZyxzJZJoB03oA2gIR0CZnQOAy2x6dX2UKGgGR0CgMh2ZqmCRaAdN6ANoCEdAmajnlS0jT3V9lChoBkdAnse6kyk9EGgHTegDaAhHQJmq4hje9Bd1fZQoaAZHQKBWFKlHjIdoB03oA2gIR0CZrAYtQKrrdX2UKGgGR0CYzULteD3/aAdN6ANoCEdAmbIzQiRnvnV9lChoBkdAnEcf2Xb/O2gHTegDaAhHQJmy86fapP11fZQoaAZHQKFeNj9XLeRoB03oA2gIR0CZs7ItDlYEdX2UKGgGR0CgzQms/6fraAdN6ANoCEdAmbRDodMj/3V9lChoBkdAnmuf5Lytm2gHTegDaAhHQJm3ZUlzEJl1fZQoaAZHQJd1oRL9MsZoB03oA2gIR0CZw4TdLxqgdX2UKGgGR0CXHGJNj9XLaAdN6ANoCEdAmcWShJyyU3V9lChoBkdAlooVQEZBLWgHTegDaAhHQJnGvl+3H7x1fZQoaAZHQJhiV0PpY9xoB03oA2gIR0CZzRUhV2iddX2UKGgGR0CZcO7wrlNlaAdN6ANoCEdAmc3b/wRXfnV9lChoBkdAmYqftpmEoWgHTegDaAhHQJnOnhXKbKB1fZQoaAZHQJlak1R+BpZoB03oA2gIR0CZzzLxZuAJdX2UKGgGR0CfkfRf4REnaAdN6ANoCEdAmdJatLcsUnV9lChoBkdAmLC4nfEXL2gHTegDaAhHQJnenBk7Oml1fZQoaAZHQJVzNYZEUj9oB03oA2gIR0CZ4KboKUmldX2UKGgGR0CX0BOXVsk6aAdN6ANoCEdAmeHV2q1gIHV9lChoBkdAle+xCUornWgHTegDaAhHQJnoOZlWfbt1fZQoaAZHQJKj3qQiiZhoB03oA2gIR0CZ6P+0w8GLdX2UKGgGR0CNVf8neBQOaAdN6ANoCEdAmenD3Ehq03V9lChoBkdAk6A2Pkq+amgHTegDaAhHQJnqVn27FsJ1fZQoaAZHQJNgllCkXUJoB03oA2gIR0CZ7XXTmW+odX2UKGgGR0Cc8LzfrKNiaAdN6ANoCEdAmfmEhFEy+HV9lChoBkdAnVxM2rGR3mgHTegDaAhHQJn7j05EMLF1fZQoaAZHQIfIh5Pdl/ZoB03oA2gIR0CZ/L2nsLOSdX2UKGgGR0CJ9cNRWLgoaAdN6ANoCEdAmgMMLv1DjXV9lChoBkdAm0d4vWYnfGgHTegDaAhHQJoD0CcPOIJ1fZQoaAZHQJxZuff4yoJoB03oA2gIR0CaBJRfnfVJdX2UKGgGR0CXdx5Rjz7NaAdN6ANoCEdAmgUpYxL0z3V9lChoBkdAhDHr56+nImgHTegDaAhHQJoIVf7aZhN1fZQoaAZHQJmC9nlGPPtoB03oA2gIR0CaFI47zTWodX2UKGgGR0CGPkF49ovjaAdN6ANoCEdAmhaad+Xqq3V9lChoBkdAkcCHbqQiimgHTegDaAhHQJoXyR1X/5t1fZQoaAZHQJE3ZcOby6NoB03oA2gIR0CaHh2qT8pDdX2UKGgGR0CXy8g5BC2MaAdN6ANoCEdAmh7f7SApa3V9lChoBkdAhtqmB4D9wWgHTegDaAhHQJofn3L3bmF1fZQoaAZHQJm44dxQzk9oB03oA2gIR0CaIDFev6j4dX2UKGgGR0CbFwybQTmGaAdN6ANoCEdAmiNM4xUNrnV9lChoBkdAm1m/OUt7KWgHTegDaAhHQJovTXmNiph1fZQoaAZHQJzkKMrEtNBoB03oA2gIR0CaMU+FUQ05dX2UKGgGR0CWbEsiSq2jaAdN6ANoCEdAmjJ59y925nV9lChoBkdAmVK59NN8E2gHTegDaAhHQJo4vEgntv51fZQoaAZHQJqHGBI4EOloB03oA2gIR0CaOX59mYjTdX2UKGgGR0Cak1mUGFBZaAdN6ANoCEdAmjo/C2tuDXV9lChoBkdAnVsTYI0IkmgHTegDaAhHQJo60XBP9DR1fZQoaAZHQJgH2JoCdSVoB03oA2gIR0CaPeu+AVfvdX2UKGgGR0Cb91U21lXjaAdN6ANoCEdAmknnj2i+L3V9lChoBkdAnD4s7IT4+WgHTegDaAhHQJpL7VMEidJ1fZQoaAZHQJqgGuyNXHRoB03oA2gIR0CaTRWcz67/dX2UKGgGR0CcN8l7MPjGaAdN6ANoCEdAmlNO8CgbqHV9lChoBkdAnzL/cnE2pGgHTegDaAhHQJpUD8qFyrB1fZQoaAZHQJ+mijxkNF1oB03oA2gIR0CaVNA2hqTKdX2UKGgGR0CcHGFfReC1aAdN6ANoCEdAmlVjYRNAT3V9lChoBkdAnAxf99+gDmgHTegDaAhHQJpYmD0163R1fZQoaAZHQJvE4JHAh0RoB03oA2gIR0CaZLFZPl+3dX2UKGgGR0Cem1Vfu1F6aAdN6ANoCEdAmmbEx20Re3V9lChoBkdAmP+ovWYnfGgHTegDaAhHQJpn9FZxJd11fZQoaAZHQJ6lPmMfigloB03oA2gIR0CablOBlMAWdX2UKGgGR0CeC56E8JUpaAdN6ANoCEdAmm8TqW1MNHV9lChoBkdAnhaS+tbLU2gHTegDaAhHQJpv0i/wiJR1fZQoaAZHQJ3GALiMo+hoB03oA2gIR0CacGLAYYR/dX2UKGgGR0CdwKhoM8YAaAdN6ANoCEdAmnN4Iv8IiXV9lChoBkdAoCUTe9Ba92gHTegDaAhHQJp/VcSoOx11fZQoaAZHQKCGQfTTfBNoB03oA2gIR0CagVZBcAzYdX2UKGgGR0Cey5lHz6JqaAdN6ANoCEdAmoKFeSjgynVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 31250, "n_steps": 8, "gamma": 0.99, "gae_lambda": 0.9, "ent_coef": 0.0, "vf_coef": 0.4, "max_grad_norm": 0.5, "normalize_advantage": false, "system_info": {"OS": "Linux-5.10.0-20-amd64-x86_64-with-glibc2.31 # 1 SMP Debian 5.10.158-2 (2022-12-13)", "Python": "3.9.14", "Stable-Baselines3": "1.8.0a2", "PyTorch": "1.13.1+cu117", "GPU Enabled": "True", "Numpy": "1.24.2", "Gym": "0.21.0"}}
replay.mp4 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:8d150913d8c5066c5e2fc3ac84706986a521ad26cad41780cd1029b2db998b20
3
+ size 1074579
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": 1949.0440048910677, "std_reward": 128.8568806999962, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-03-10T19:46:00.759484"}
vec_normalize.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:12bb4872d57e17c491bea90f16f00a0bf69e1998a1f831a39843f6ce2387ce9b
3
+ size 2136