Initial commit
Browse files- .gitattributes +1 -0
- README.md +37 -0
- a2c-AntBulletEnv-v0.zip +3 -0
- a2c-AntBulletEnv-v0/_stable_baselines3_version +1 -0
- a2c-AntBulletEnv-v0/data +106 -0
- a2c-AntBulletEnv-v0/policy.optimizer.pth +3 -0
- a2c-AntBulletEnv-v0/policy.pth +3 -0
- a2c-AntBulletEnv-v0/pytorch_variables.pth +3 -0
- a2c-AntBulletEnv-v0/system_info.txt +7 -0
- config.json +1 -0
- replay.mp4 +3 -0
- results.json +1 -0
- vec_normalize.pkl +3 -0
.gitattributes
CHANGED
@@ -32,3 +32,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
32 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
33 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
34 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
32 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
33 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
34 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
35 |
+
replay.mp4 filter=lfs diff=lfs merge=lfs -text
|
README.md
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- AntBulletEnv-v0
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: A2C
|
10 |
+
results:
|
11 |
+
- task:
|
12 |
+
type: reinforcement-learning
|
13 |
+
name: reinforcement-learning
|
14 |
+
dataset:
|
15 |
+
name: AntBulletEnv-v0
|
16 |
+
type: AntBulletEnv-v0
|
17 |
+
metrics:
|
18 |
+
- type: mean_reward
|
19 |
+
value: 1949.04 +/- 128.86
|
20 |
+
name: mean_reward
|
21 |
+
verified: false
|
22 |
+
---
|
23 |
+
|
24 |
+
# **A2C** Agent playing **AntBulletEnv-v0**
|
25 |
+
This is a trained model of a **A2C** agent playing **AntBulletEnv-v0**
|
26 |
+
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
27 |
+
|
28 |
+
## Usage (with Stable-baselines3)
|
29 |
+
TODO: Add your code
|
30 |
+
|
31 |
+
|
32 |
+
```python
|
33 |
+
from stable_baselines3 import ...
|
34 |
+
from huggingface_sb3 import load_from_hub
|
35 |
+
|
36 |
+
...
|
37 |
+
```
|
a2c-AntBulletEnv-v0.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:ba0bd85e57d0daf549c0050eb9033f1341d4595b8196a9496b9a083055541718
|
3 |
+
size 130449
|
a2c-AntBulletEnv-v0/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
1.8.0a2
|
a2c-AntBulletEnv-v0/data
ADDED
@@ -0,0 +1,106 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7f393aee1b80>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f393aee1c10>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f393aee1ca0>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f393aee1d30>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7f393aee1dc0>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7f393aee1e50>",
|
13 |
+
"extract_features": "<function ActorCriticPolicy.extract_features at 0x7f393aee1ee0>",
|
14 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f393aee1f70>",
|
15 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7f393aee4040>",
|
16 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f393aee40d0>",
|
17 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f393aee4160>",
|
18 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7f393aee41f0>",
|
19 |
+
"__abstractmethods__": "frozenset()",
|
20 |
+
"_abc_impl": "<_abc._abc_data object at 0x7f393aee0ec0>"
|
21 |
+
},
|
22 |
+
"verbose": 1,
|
23 |
+
"policy_kwargs": {
|
24 |
+
":type:": "<class 'dict'>",
|
25 |
+
":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu",
|
26 |
+
"log_std_init": -2,
|
27 |
+
"ortho_init": false,
|
28 |
+
"optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>",
|
29 |
+
"optimizer_kwargs": {
|
30 |
+
"alpha": 0.99,
|
31 |
+
"eps": 1e-05,
|
32 |
+
"weight_decay": 0
|
33 |
+
}
|
34 |
+
},
|
35 |
+
"observation_space": {
|
36 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
37 |
+
":serialized:": "gAWVZwIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWcAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgKSxyFlIwBQ5R0lFKUjARoaWdolGgSKJZwAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UaApLHIWUaBV0lFKUjA1ib3VuZGVkX2JlbG93lGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLHIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaCFLHIWUaBV0lFKUjApfbnBfcmFuZG9tlE51Yi4=",
|
38 |
+
"dtype": "float32",
|
39 |
+
"_shape": [
|
40 |
+
28
|
41 |
+
],
|
42 |
+
"low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]",
|
43 |
+
"high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]",
|
44 |
+
"bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]",
|
45 |
+
"bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]",
|
46 |
+
"_np_random": null
|
47 |
+
},
|
48 |
+
"action_space": {
|
49 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
50 |
+
":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAv5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAP5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAQEBAQEBAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAEBAQEBAQEBlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
|
51 |
+
"dtype": "float32",
|
52 |
+
"_shape": [
|
53 |
+
8
|
54 |
+
],
|
55 |
+
"low": "[-1. -1. -1. -1. -1. -1. -1. -1.]",
|
56 |
+
"high": "[1. 1. 1. 1. 1. 1. 1. 1.]",
|
57 |
+
"bounded_below": "[ True True True True True True True True]",
|
58 |
+
"bounded_above": "[ True True True True True True True True]",
|
59 |
+
"_np_random": null
|
60 |
+
},
|
61 |
+
"n_envs": 8,
|
62 |
+
"num_timesteps": 2000000,
|
63 |
+
"_total_timesteps": 2000000,
|
64 |
+
"_num_timesteps_at_start": 0,
|
65 |
+
"seed": null,
|
66 |
+
"action_noise": null,
|
67 |
+
"start_time": 1678433852124548298,
|
68 |
+
"learning_rate": 0.00096,
|
69 |
+
"tensorboard_log": null,
|
70 |
+
"lr_schedule": {
|
71 |
+
":type:": "<class 'function'>",
|
72 |
+
":serialized:": "gAWV3QIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMVS9ob21lL3p6L0RPRC9EZWVwUkwvZW52L2xpYi9weXRob24zLjkvc2l0ZS1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuCQwIAAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjFUvaG9tZS96ei9ET0QvRGVlcFJML2Vudi9saWIvcHl0aG9uMy45L3NpdGUtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9PdRBNVR1phZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
73 |
+
},
|
74 |
+
"_last_obs": {
|
75 |
+
":type:": "<class 'numpy.ndarray'>",
|
76 |
+
":serialized:": "gAWV9QMAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJaAAwAAAAAAAMS+Cb+wtJo/LcGOvrEZpT9Ctpg/BVGcP8x6Hz0GxEm+HQwMP++unz9ifVc+i5EWP0FRmj/chlw+oDxaP7LsyL80SMg/2af0vsE6q713HHU/XTiavtqutj6rzuW92Uuvv/wOhL8UItc+l1/GPm9Wh79NO5a9y07RvVTQBj+H3r0/VFnsv3x6vb8H9yo/M4hMP33jMD9vJLK/Y07CPCa4A8BSYji/sB+6P0sJhb9HfJe97WVKvzrlPz/ttQM/3Wyxv7PS9r7j9FK+arYUv0anDkD8DoS/FCLXPvUuJcBvVoe/+ulgv27YC79IAvw+SVXHP8OJZL9UI6+/Cpy/vg3roDvBwyo/uQv1vhKREL9MMn49ixyDv/zblT9j2Po+JHh1PoxlNr+Ix2o/yUAyP7wE1r2t9jm8v7stPwPSKT7nnhhA/A6EvxQi1z71LiXAb1aHv2nDqr7aUoe+z9IHP9kWoD8O56i/7bE+PxcmL770zZu+w6p5P9GGZL/TQ5K+wDQ6v1fXk78xOKo+pvDEPYf9gz+W33O/KZknv4VAKz/EAcu+MZwmvy4o7r9dzsQ+OefqPvwOhL8UItc+l1/GPm9Wh79FCDm+gp84vWlNBT9rnIQ/WKUWwCkHBz+K1xC9ZoLTvnC5ET9PKgRAVAL6Pux2lb5WzbS/Mr2aPovkSb2mszjA8MiWv4GGCz8qYEc/gamOPBtmLj0luxlAF88sv3Z9jj/kIXg/o1AYwJdfxj5vVoe/ya4av1XzhL6h3Ac/1OrCPkyD+j6boEM/oyAPP+XfQr7hCXM/WHAVv7EDCb9V1qO/8yrlvlZ8cz+pD5K9hV2zPjlecj+b7UE/FeEjPy2sRL8rIly/ALjFvf4r2L7EhRw+/A6EvxQi1z6XX8Y+0B5yP3fWZL5rFh8+q132PrjIGj+xx1s+VCAvPwvUQj+5RTs+i0eEP6Pj+b2u2AY/tA2/v3fZdL/KsGM/aCVSvwNQgT7zk+O+OO2XP8KbMT/+K42/bM6Jv7gQHz7EQBO/vzyLPuQheD8UItc+l1/GPtAecj905Ko+n6pwP1+4kzw2orQ/B8fDPpDoST8e3h+/llv3vlldLj8DTnw/AS29Pk7BTj+Le6+/KAQOPU1ynD1a7Z69FlxKPd1Xyb8n2lW+bevdPy1K3j2TgoK/oojsvs9epb7kIXg/FCLXPpdfxj5vVoe/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksISxyGlIwBQ5R0lFKULg=="
|
77 |
+
},
|
78 |
+
"_last_episode_starts": {
|
79 |
+
":type:": "<class 'numpy.ndarray'>",
|
80 |
+
":serialized:": "gAWVewAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYIAAAAAAAAAAAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlC4="
|
81 |
+
},
|
82 |
+
"_last_original_obs": {
|
83 |
+
":type:": "<class 'numpy.ndarray'>",
|
84 |
+
":serialized:": "gAWV9QMAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJaAAwAAAAAAAAAAAACaQtY2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAXtzbvQAAAAC/tfu/AAAAAAoStD0AAAAAbprePwAAAAAgx1I8AAAAAJ9Q6z8AAAAAqOFzvQAAAAAaMeW/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAT6HptgAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgAJx+T0AAAAAtu/0vwAAAADarAy+AAAAAGpP4D8AAAAATSRlvAAAAAA8ut0/AAAAAL9VFT0AAAAAfbHdvwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAHUtpzUAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIAev/e9AAAAANFw8L8AAAAAbfPOvQAAAACVb9o/AAAAAMa5tj0AAAAAmP3sPwAAAAC0t309AAAAAHzC7r8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABoeYC2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAHXPkPAAAAAA5mvq/AAAAAHVkfL0AAAAAhN7kPwAAAABVGdu9AAAAAEQP6z8AAAAAF7IJvQAAAAA8lOi/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAC/nKNQAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgMjbGr0AAAAAP6j8vwAAAADtaxU8AAAAAFyB5T8AAAAATb6yvQAAAACufec/AAAAAEMO5r0AAAAAalT/vwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAHxhcDYAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAICRL409AAAAAAq89r8AAAAA6vMHPgAAAACSt98/AAAAANW4nz0AAAAAHq/9PwAAAACMU967AAAAAI2u8r8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACQqXS2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAm4QbPQAAAADJU9y/AAAAAFHquL0AAAAA+yoBQAAAAACOe9k9AAAAAOAw9D8AAAAAoucEPgAAAABx59i/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAE+16tgAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgHjQ0D0AAAAAt9YAwAAAAADGCG49AAAAAKmf8T8AAAAA6AqGvQAAAABTcuk/AAAAAHHXXT0AAAAApEEAwAAAAAAAAAAAAAAAAAAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksISxyGlIwBQ5R0lFKULg=="
|
85 |
+
},
|
86 |
+
"_episode_num": 0,
|
87 |
+
"use_sde": true,
|
88 |
+
"sde_sample_freq": -1,
|
89 |
+
"_current_progress_remaining": 0.0,
|
90 |
+
"ep_info_buffer": {
|
91 |
+
":type:": "<class 'collections.deque'>",
|
92 |
+
":serialized:": "gAWVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQJoVd55Z8ruMAWyUTegDjAF0lEdAmTGsGLUCrHV9lChoBkdAmuTKxHG0eGgHTegDaAhHQJk9rbQC0Wx1fZQoaAZHQJmm2fBeok1oB03oA2gIR0CZP8ANG3F2dX2UKGgGR0CaT1SkTHsDaAdN6ANoCEdAmUDw8bJfY3V9lChoBkdAnPzxE4Nqg2gHTegDaAhHQJlHXhsImgJ1fZQoaAZHQJk/VRIjGDNoB03oA2gIR0CZSCciGFi8dX2UKGgGR0CdG8kgfU4JaAdN6ANoCEdAmUjtP+GXX3V9lChoBkdAm0rKgElme2gHTegDaAhHQJlJg/r0J4V1fZQoaAZHQJ1j59YwIt1oB03oA2gIR0CZTLOCoS+QdX2UKGgGR0CfJrqXnhbXaAdN6ANoCEdAmVj6DCgsb3V9lChoBkdAnxyc9jgAImgHTegDaAhHQJlbBkMCtA91fZQoaAZHQJFQVXFLnLdoB03oA2gIR0CZXDYaYNRWdX2UKGgGR0CfD1VghKUWaAdN6ANoCEdAmWKSswL3K3V9lChoBkdAnfafMKTjemgHTegDaAhHQJljWTOgQH11fZQoaAZHQJ6jIAOrhitoB03oA2gIR0CZZB4Glhw3dX2UKGgGR0CfKMQb+98JaAdN6ANoCEdAmWS0uxrzoXV9lChoBkdAoJFVIK+i8GgHTegDaAhHQJln8+NcW0t1fZQoaAZHQJ6yaoP07KdoB03oA2gIR0CZdD3kPtladX2UKGgGR0Cf/PlbNbC8aAdN6ANoCEdAmXY3tOVPe3V9lChoBkdAoLriuQp4KWgHTegDaAhHQJl3WKEWZZ11fZQoaAZHQKA5TjTa0yBoB03oA2gIR0CZfWz544ZNdX2UKGgGR0Cg0Y4UFjd6aAdN6ANoCEdAmX4sQyylenV9lChoBkdAoUOG5+Ytx2gHTegDaAhHQJl+5p8F6iV1fZQoaAZHQJ+F3Him2stoB03oA2gIR0CZf3XqqwQldX2UKGgGR0Cfv0RAKOT8aAdN6ANoCEdAmYKkbgjyF3V9lChoBkdAnpdfnOjZc2gHTegDaAhHQJmOglkYoAp1fZQoaAZHQKD8JyWiUPhoB03oA2gIR0CZkHu63AmBdX2UKGgGR0CgB6WnTAnEaAdN6ANoCEdAmZGgZTAFgXV9lChoBkdAn8TmqT8pC2gHTegDaAhHQJmX00Ltu1p1fZQoaAZHQKAfufwI+ntoB03oA2gIR0CZmJWM0gr6dX2UKGgGR0Cfx7rNW2gGaAdN6ANoCEdAmZlU2Hck+3V9lChoBkdAoaFDSsr/bWgHTegDaAhHQJmZ5yIYWLx1fZQoaAZHQKAhZyxzJZJoB03oA2gIR0CZnQOAy2x6dX2UKGgGR0CgMh2ZqmCRaAdN6ANoCEdAmajnlS0jT3V9lChoBkdAnse6kyk9EGgHTegDaAhHQJmq4hje9Bd1fZQoaAZHQKBWFKlHjIdoB03oA2gIR0CZrAYtQKrrdX2UKGgGR0CYzULteD3/aAdN6ANoCEdAmbIzQiRnvnV9lChoBkdAnEcf2Xb/O2gHTegDaAhHQJmy86fapP11fZQoaAZHQKFeNj9XLeRoB03oA2gIR0CZs7ItDlYEdX2UKGgGR0CgzQms/6fraAdN6ANoCEdAmbRDodMj/3V9lChoBkdAnmuf5Lytm2gHTegDaAhHQJm3ZUlzEJl1fZQoaAZHQJd1oRL9MsZoB03oA2gIR0CZw4TdLxqgdX2UKGgGR0CXHGJNj9XLaAdN6ANoCEdAmcWShJyyU3V9lChoBkdAlooVQEZBLWgHTegDaAhHQJnGvl+3H7x1fZQoaAZHQJhiV0PpY9xoB03oA2gIR0CZzRUhV2iddX2UKGgGR0CZcO7wrlNlaAdN6ANoCEdAmc3b/wRXfnV9lChoBkdAmYqftpmEoWgHTegDaAhHQJnOnhXKbKB1fZQoaAZHQJlak1R+BpZoB03oA2gIR0CZzzLxZuAJdX2UKGgGR0CfkfRf4REnaAdN6ANoCEdAmdJatLcsUnV9lChoBkdAmLC4nfEXL2gHTegDaAhHQJnenBk7Oml1fZQoaAZHQJVzNYZEUj9oB03oA2gIR0CZ4KboKUmldX2UKGgGR0CX0BOXVsk6aAdN6ANoCEdAmeHV2q1gIHV9lChoBkdAle+xCUornWgHTegDaAhHQJnoOZlWfbt1fZQoaAZHQJKj3qQiiZhoB03oA2gIR0CZ6P+0w8GLdX2UKGgGR0CNVf8neBQOaAdN6ANoCEdAmenD3Ehq03V9lChoBkdAk6A2Pkq+amgHTegDaAhHQJnqVn27FsJ1fZQoaAZHQJNgllCkXUJoB03oA2gIR0CZ7XXTmW+odX2UKGgGR0Cc8LzfrKNiaAdN6ANoCEdAmfmEhFEy+HV9lChoBkdAnVxM2rGR3mgHTegDaAhHQJn7j05EMLF1fZQoaAZHQIfIh5Pdl/ZoB03oA2gIR0CZ/L2nsLOSdX2UKGgGR0CJ9cNRWLgoaAdN6ANoCEdAmgMMLv1DjXV9lChoBkdAm0d4vWYnfGgHTegDaAhHQJoD0CcPOIJ1fZQoaAZHQJxZuff4yoJoB03oA2gIR0CaBJRfnfVJdX2UKGgGR0CXdx5Rjz7NaAdN6ANoCEdAmgUpYxL0z3V9lChoBkdAhDHr56+nImgHTegDaAhHQJoIVf7aZhN1fZQoaAZHQJmC9nlGPPtoB03oA2gIR0CaFI47zTWodX2UKGgGR0CGPkF49ovjaAdN6ANoCEdAmhaad+Xqq3V9lChoBkdAkcCHbqQiimgHTegDaAhHQJoXyR1X/5t1fZQoaAZHQJE3ZcOby6NoB03oA2gIR0CaHh2qT8pDdX2UKGgGR0CXy8g5BC2MaAdN6ANoCEdAmh7f7SApa3V9lChoBkdAhtqmB4D9wWgHTegDaAhHQJofn3L3bmF1fZQoaAZHQJm44dxQzk9oB03oA2gIR0CaIDFev6j4dX2UKGgGR0CbFwybQTmGaAdN6ANoCEdAmiNM4xUNrnV9lChoBkdAm1m/OUt7KWgHTegDaAhHQJovTXmNiph1fZQoaAZHQJzkKMrEtNBoB03oA2gIR0CaMU+FUQ05dX2UKGgGR0CWbEsiSq2jaAdN6ANoCEdAmjJ59y925nV9lChoBkdAmVK59NN8E2gHTegDaAhHQJo4vEgntv51fZQoaAZHQJqHGBI4EOloB03oA2gIR0CaOX59mYjTdX2UKGgGR0Cak1mUGFBZaAdN6ANoCEdAmjo/C2tuDXV9lChoBkdAnVsTYI0IkmgHTegDaAhHQJo60XBP9DR1fZQoaAZHQJgH2JoCdSVoB03oA2gIR0CaPeu+AVfvdX2UKGgGR0Cb91U21lXjaAdN6ANoCEdAmknnj2i+L3V9lChoBkdAnD4s7IT4+WgHTegDaAhHQJpL7VMEidJ1fZQoaAZHQJqgGuyNXHRoB03oA2gIR0CaTRWcz67/dX2UKGgGR0CcN8l7MPjGaAdN6ANoCEdAmlNO8CgbqHV9lChoBkdAnzL/cnE2pGgHTegDaAhHQJpUD8qFyrB1fZQoaAZHQJ+mijxkNF1oB03oA2gIR0CaVNA2hqTKdX2UKGgGR0CcHGFfReC1aAdN6ANoCEdAmlVjYRNAT3V9lChoBkdAnAxf99+gDmgHTegDaAhHQJpYmD0163R1fZQoaAZHQJvE4JHAh0RoB03oA2gIR0CaZLFZPl+3dX2UKGgGR0Cem1Vfu1F6aAdN6ANoCEdAmmbEx20Re3V9lChoBkdAmP+ovWYnfGgHTegDaAhHQJpn9FZxJd11fZQoaAZHQJ6lPmMfigloB03oA2gIR0CablOBlMAWdX2UKGgGR0CeC56E8JUpaAdN6ANoCEdAmm8TqW1MNHV9lChoBkdAnhaS+tbLU2gHTegDaAhHQJpv0i/wiJR1fZQoaAZHQJ3GALiMo+hoB03oA2gIR0CacGLAYYR/dX2UKGgGR0CdwKhoM8YAaAdN6ANoCEdAmnN4Iv8IiXV9lChoBkdAoCUTe9Ba92gHTegDaAhHQJp/VcSoOx11fZQoaAZHQKCGQfTTfBNoB03oA2gIR0CagVZBcAzYdX2UKGgGR0Cey5lHz6JqaAdN6ANoCEdAmoKFeSjgynVlLg=="
|
93 |
+
},
|
94 |
+
"ep_success_buffer": {
|
95 |
+
":type:": "<class 'collections.deque'>",
|
96 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
97 |
+
},
|
98 |
+
"_n_updates": 31250,
|
99 |
+
"n_steps": 8,
|
100 |
+
"gamma": 0.99,
|
101 |
+
"gae_lambda": 0.9,
|
102 |
+
"ent_coef": 0.0,
|
103 |
+
"vf_coef": 0.4,
|
104 |
+
"max_grad_norm": 0.5,
|
105 |
+
"normalize_advantage": false
|
106 |
+
}
|
a2c-AntBulletEnv-v0/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:1b76ae150103b71e6712f8ad1c79673781df10a6f05f7e651e5a35212edc2d85
|
3 |
+
size 56190
|
a2c-AntBulletEnv-v0/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:1c065f2cb65a5c397b5dd7db4793048644c5644fa852e162567cf5933093e8fb
|
3 |
+
size 56894
|
a2c-AntBulletEnv-v0/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
|
3 |
+
size 431
|
a2c-AntBulletEnv-v0/system_info.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
- OS: Linux-5.10.0-20-amd64-x86_64-with-glibc2.31 # 1 SMP Debian 5.10.158-2 (2022-12-13)
|
2 |
+
- Python: 3.9.14
|
3 |
+
- Stable-Baselines3: 1.8.0a2
|
4 |
+
- PyTorch: 1.13.1+cu117
|
5 |
+
- GPU Enabled: True
|
6 |
+
- Numpy: 1.24.2
|
7 |
+
- Gym: 0.21.0
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f393aee1b80>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f393aee1c10>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f393aee1ca0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f393aee1d30>", "_build": "<function ActorCriticPolicy._build at 0x7f393aee1dc0>", "forward": "<function ActorCriticPolicy.forward at 0x7f393aee1e50>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f393aee1ee0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f393aee1f70>", "_predict": "<function ActorCriticPolicy._predict at 0x7f393aee4040>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f393aee40d0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f393aee4160>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f393aee41f0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7f393aee0ec0>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu", "log_std_init": -2, "ortho_init": false, "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVZwIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWcAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgKSxyFlIwBQ5R0lFKUjARoaWdolGgSKJZwAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UaApLHIWUaBV0lFKUjA1ib3VuZGVkX2JlbG93lGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLHIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaCFLHIWUaBV0lFKUjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "_shape": [28], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAv5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAP5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAQEBAQEBAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAEBAQEBAQEBlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-1. -1. -1. -1. -1. -1. -1. -1.]", "high": "[1. 1. 1. 1. 1. 1. 1. 1.]", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_np_random": null}, "n_envs": 8, "num_timesteps": 2000000, "_total_timesteps": 2000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1678433852124548298, "learning_rate": 0.00096, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWV3QIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMVS9ob21lL3p6L0RPRC9EZWVwUkwvZW52L2xpYi9weXRob24zLjkvc2l0ZS1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuCQwIAAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjFUvaG9tZS96ei9ET0QvRGVlcFJML2Vudi9saWIvcHl0aG9uMy45L3NpdGUtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9PdRBNVR1phZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWV9QMAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJaAAwAAAAAAAMS+Cb+wtJo/LcGOvrEZpT9Ctpg/BVGcP8x6Hz0GxEm+HQwMP++unz9ifVc+i5EWP0FRmj/chlw+oDxaP7LsyL80SMg/2af0vsE6q713HHU/XTiavtqutj6rzuW92Uuvv/wOhL8UItc+l1/GPm9Wh79NO5a9y07RvVTQBj+H3r0/VFnsv3x6vb8H9yo/M4hMP33jMD9vJLK/Y07CPCa4A8BSYji/sB+6P0sJhb9HfJe97WVKvzrlPz/ttQM/3Wyxv7PS9r7j9FK+arYUv0anDkD8DoS/FCLXPvUuJcBvVoe/+ulgv27YC79IAvw+SVXHP8OJZL9UI6+/Cpy/vg3roDvBwyo/uQv1vhKREL9MMn49ixyDv/zblT9j2Po+JHh1PoxlNr+Ix2o/yUAyP7wE1r2t9jm8v7stPwPSKT7nnhhA/A6EvxQi1z71LiXAb1aHv2nDqr7aUoe+z9IHP9kWoD8O56i/7bE+PxcmL770zZu+w6p5P9GGZL/TQ5K+wDQ6v1fXk78xOKo+pvDEPYf9gz+W33O/KZknv4VAKz/EAcu+MZwmvy4o7r9dzsQ+OefqPvwOhL8UItc+l1/GPm9Wh79FCDm+gp84vWlNBT9rnIQ/WKUWwCkHBz+K1xC9ZoLTvnC5ET9PKgRAVAL6Pux2lb5WzbS/Mr2aPovkSb2mszjA8MiWv4GGCz8qYEc/gamOPBtmLj0luxlAF88sv3Z9jj/kIXg/o1AYwJdfxj5vVoe/ya4av1XzhL6h3Ac/1OrCPkyD+j6boEM/oyAPP+XfQr7hCXM/WHAVv7EDCb9V1qO/8yrlvlZ8cz+pD5K9hV2zPjlecj+b7UE/FeEjPy2sRL8rIly/ALjFvf4r2L7EhRw+/A6EvxQi1z6XX8Y+0B5yP3fWZL5rFh8+q132PrjIGj+xx1s+VCAvPwvUQj+5RTs+i0eEP6Pj+b2u2AY/tA2/v3fZdL/KsGM/aCVSvwNQgT7zk+O+OO2XP8KbMT/+K42/bM6Jv7gQHz7EQBO/vzyLPuQheD8UItc+l1/GPtAecj905Ko+n6pwP1+4kzw2orQ/B8fDPpDoST8e3h+/llv3vlldLj8DTnw/AS29Pk7BTj+Le6+/KAQOPU1ynD1a7Z69FlxKPd1Xyb8n2lW+bevdPy1K3j2TgoK/oojsvs9epb7kIXg/FCLXPpdfxj5vVoe/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksISxyGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVewAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYIAAAAAAAAAAAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlC4="}, "_last_original_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWV9QMAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJaAAwAAAAAAAAAAAACaQtY2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAXtzbvQAAAAC/tfu/AAAAAAoStD0AAAAAbprePwAAAAAgx1I8AAAAAJ9Q6z8AAAAAqOFzvQAAAAAaMeW/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAT6HptgAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgAJx+T0AAAAAtu/0vwAAAADarAy+AAAAAGpP4D8AAAAATSRlvAAAAAA8ut0/AAAAAL9VFT0AAAAAfbHdvwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAHUtpzUAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIAev/e9AAAAANFw8L8AAAAAbfPOvQAAAACVb9o/AAAAAMa5tj0AAAAAmP3sPwAAAAC0t309AAAAAHzC7r8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABoeYC2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAHXPkPAAAAAA5mvq/AAAAAHVkfL0AAAAAhN7kPwAAAABVGdu9AAAAAEQP6z8AAAAAF7IJvQAAAAA8lOi/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAC/nKNQAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgMjbGr0AAAAAP6j8vwAAAADtaxU8AAAAAFyB5T8AAAAATb6yvQAAAACufec/AAAAAEMO5r0AAAAAalT/vwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAHxhcDYAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAICRL409AAAAAAq89r8AAAAA6vMHPgAAAACSt98/AAAAANW4nz0AAAAAHq/9PwAAAACMU967AAAAAI2u8r8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACQqXS2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAm4QbPQAAAADJU9y/AAAAAFHquL0AAAAA+yoBQAAAAACOe9k9AAAAAOAw9D8AAAAAoucEPgAAAABx59i/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAE+16tgAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgHjQ0D0AAAAAt9YAwAAAAADGCG49AAAAAKmf8T8AAAAA6AqGvQAAAABTcuk/AAAAAHHXXT0AAAAApEEAwAAAAAAAAAAAAAAAAAAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksISxyGlIwBQ5R0lFKULg=="}, "_episode_num": 0, "use_sde": true, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQJoVd55Z8ruMAWyUTegDjAF0lEdAmTGsGLUCrHV9lChoBkdAmuTKxHG0eGgHTegDaAhHQJk9rbQC0Wx1fZQoaAZHQJmm2fBeok1oB03oA2gIR0CZP8ANG3F2dX2UKGgGR0CaT1SkTHsDaAdN6ANoCEdAmUDw8bJfY3V9lChoBkdAnPzxE4Nqg2gHTegDaAhHQJlHXhsImgJ1fZQoaAZHQJk/VRIjGDNoB03oA2gIR0CZSCciGFi8dX2UKGgGR0CdG8kgfU4JaAdN6ANoCEdAmUjtP+GXX3V9lChoBkdAm0rKgElme2gHTegDaAhHQJlJg/r0J4V1fZQoaAZHQJ1j59YwIt1oB03oA2gIR0CZTLOCoS+QdX2UKGgGR0CfJrqXnhbXaAdN6ANoCEdAmVj6DCgsb3V9lChoBkdAnxyc9jgAImgHTegDaAhHQJlbBkMCtA91fZQoaAZHQJFQVXFLnLdoB03oA2gIR0CZXDYaYNRWdX2UKGgGR0CfD1VghKUWaAdN6ANoCEdAmWKSswL3K3V9lChoBkdAnfafMKTjemgHTegDaAhHQJljWTOgQH11fZQoaAZHQJ6jIAOrhitoB03oA2gIR0CZZB4Glhw3dX2UKGgGR0CfKMQb+98JaAdN6ANoCEdAmWS0uxrzoXV9lChoBkdAoJFVIK+i8GgHTegDaAhHQJln8+NcW0t1fZQoaAZHQJ6yaoP07KdoB03oA2gIR0CZdD3kPtladX2UKGgGR0Cf/PlbNbC8aAdN6ANoCEdAmXY3tOVPe3V9lChoBkdAoLriuQp4KWgHTegDaAhHQJl3WKEWZZ11fZQoaAZHQKA5TjTa0yBoB03oA2gIR0CZfWz544ZNdX2UKGgGR0Cg0Y4UFjd6aAdN6ANoCEdAmX4sQyylenV9lChoBkdAoUOG5+Ytx2gHTegDaAhHQJl+5p8F6iV1fZQoaAZHQJ+F3Him2stoB03oA2gIR0CZf3XqqwQldX2UKGgGR0Cfv0RAKOT8aAdN6ANoCEdAmYKkbgjyF3V9lChoBkdAnpdfnOjZc2gHTegDaAhHQJmOglkYoAp1fZQoaAZHQKD8JyWiUPhoB03oA2gIR0CZkHu63AmBdX2UKGgGR0CgB6WnTAnEaAdN6ANoCEdAmZGgZTAFgXV9lChoBkdAn8TmqT8pC2gHTegDaAhHQJmX00Ltu1p1fZQoaAZHQKAfufwI+ntoB03oA2gIR0CZmJWM0gr6dX2UKGgGR0Cfx7rNW2gGaAdN6ANoCEdAmZlU2Hck+3V9lChoBkdAoaFDSsr/bWgHTegDaAhHQJmZ5yIYWLx1fZQoaAZHQKAhZyxzJZJoB03oA2gIR0CZnQOAy2x6dX2UKGgGR0CgMh2ZqmCRaAdN6ANoCEdAmajnlS0jT3V9lChoBkdAnse6kyk9EGgHTegDaAhHQJmq4hje9Bd1fZQoaAZHQKBWFKlHjIdoB03oA2gIR0CZrAYtQKrrdX2UKGgGR0CYzULteD3/aAdN6ANoCEdAmbIzQiRnvnV9lChoBkdAnEcf2Xb/O2gHTegDaAhHQJmy86fapP11fZQoaAZHQKFeNj9XLeRoB03oA2gIR0CZs7ItDlYEdX2UKGgGR0CgzQms/6fraAdN6ANoCEdAmbRDodMj/3V9lChoBkdAnmuf5Lytm2gHTegDaAhHQJm3ZUlzEJl1fZQoaAZHQJd1oRL9MsZoB03oA2gIR0CZw4TdLxqgdX2UKGgGR0CXHGJNj9XLaAdN6ANoCEdAmcWShJyyU3V9lChoBkdAlooVQEZBLWgHTegDaAhHQJnGvl+3H7x1fZQoaAZHQJhiV0PpY9xoB03oA2gIR0CZzRUhV2iddX2UKGgGR0CZcO7wrlNlaAdN6ANoCEdAmc3b/wRXfnV9lChoBkdAmYqftpmEoWgHTegDaAhHQJnOnhXKbKB1fZQoaAZHQJlak1R+BpZoB03oA2gIR0CZzzLxZuAJdX2UKGgGR0CfkfRf4REnaAdN6ANoCEdAmdJatLcsUnV9lChoBkdAmLC4nfEXL2gHTegDaAhHQJnenBk7Oml1fZQoaAZHQJVzNYZEUj9oB03oA2gIR0CZ4KboKUmldX2UKGgGR0CX0BOXVsk6aAdN6ANoCEdAmeHV2q1gIHV9lChoBkdAle+xCUornWgHTegDaAhHQJnoOZlWfbt1fZQoaAZHQJKj3qQiiZhoB03oA2gIR0CZ6P+0w8GLdX2UKGgGR0CNVf8neBQOaAdN6ANoCEdAmenD3Ehq03V9lChoBkdAk6A2Pkq+amgHTegDaAhHQJnqVn27FsJ1fZQoaAZHQJNgllCkXUJoB03oA2gIR0CZ7XXTmW+odX2UKGgGR0Cc8LzfrKNiaAdN6ANoCEdAmfmEhFEy+HV9lChoBkdAnVxM2rGR3mgHTegDaAhHQJn7j05EMLF1fZQoaAZHQIfIh5Pdl/ZoB03oA2gIR0CZ/L2nsLOSdX2UKGgGR0CJ9cNRWLgoaAdN6ANoCEdAmgMMLv1DjXV9lChoBkdAm0d4vWYnfGgHTegDaAhHQJoD0CcPOIJ1fZQoaAZHQJxZuff4yoJoB03oA2gIR0CaBJRfnfVJdX2UKGgGR0CXdx5Rjz7NaAdN6ANoCEdAmgUpYxL0z3V9lChoBkdAhDHr56+nImgHTegDaAhHQJoIVf7aZhN1fZQoaAZHQJmC9nlGPPtoB03oA2gIR0CaFI47zTWodX2UKGgGR0CGPkF49ovjaAdN6ANoCEdAmhaad+Xqq3V9lChoBkdAkcCHbqQiimgHTegDaAhHQJoXyR1X/5t1fZQoaAZHQJE3ZcOby6NoB03oA2gIR0CaHh2qT8pDdX2UKGgGR0CXy8g5BC2MaAdN6ANoCEdAmh7f7SApa3V9lChoBkdAhtqmB4D9wWgHTegDaAhHQJofn3L3bmF1fZQoaAZHQJm44dxQzk9oB03oA2gIR0CaIDFev6j4dX2UKGgGR0CbFwybQTmGaAdN6ANoCEdAmiNM4xUNrnV9lChoBkdAm1m/OUt7KWgHTegDaAhHQJovTXmNiph1fZQoaAZHQJzkKMrEtNBoB03oA2gIR0CaMU+FUQ05dX2UKGgGR0CWbEsiSq2jaAdN6ANoCEdAmjJ59y925nV9lChoBkdAmVK59NN8E2gHTegDaAhHQJo4vEgntv51fZQoaAZHQJqHGBI4EOloB03oA2gIR0CaOX59mYjTdX2UKGgGR0Cak1mUGFBZaAdN6ANoCEdAmjo/C2tuDXV9lChoBkdAnVsTYI0IkmgHTegDaAhHQJo60XBP9DR1fZQoaAZHQJgH2JoCdSVoB03oA2gIR0CaPeu+AVfvdX2UKGgGR0Cb91U21lXjaAdN6ANoCEdAmknnj2i+L3V9lChoBkdAnD4s7IT4+WgHTegDaAhHQJpL7VMEidJ1fZQoaAZHQJqgGuyNXHRoB03oA2gIR0CaTRWcz67/dX2UKGgGR0CcN8l7MPjGaAdN6ANoCEdAmlNO8CgbqHV9lChoBkdAnzL/cnE2pGgHTegDaAhHQJpUD8qFyrB1fZQoaAZHQJ+mijxkNF1oB03oA2gIR0CaVNA2hqTKdX2UKGgGR0CcHGFfReC1aAdN6ANoCEdAmlVjYRNAT3V9lChoBkdAnAxf99+gDmgHTegDaAhHQJpYmD0163R1fZQoaAZHQJvE4JHAh0RoB03oA2gIR0CaZLFZPl+3dX2UKGgGR0Cem1Vfu1F6aAdN6ANoCEdAmmbEx20Re3V9lChoBkdAmP+ovWYnfGgHTegDaAhHQJpn9FZxJd11fZQoaAZHQJ6lPmMfigloB03oA2gIR0CablOBlMAWdX2UKGgGR0CeC56E8JUpaAdN6ANoCEdAmm8TqW1MNHV9lChoBkdAnhaS+tbLU2gHTegDaAhHQJpv0i/wiJR1fZQoaAZHQJ3GALiMo+hoB03oA2gIR0CacGLAYYR/dX2UKGgGR0CdwKhoM8YAaAdN6ANoCEdAmnN4Iv8IiXV9lChoBkdAoCUTe9Ba92gHTegDaAhHQJp/VcSoOx11fZQoaAZHQKCGQfTTfBNoB03oA2gIR0CagVZBcAzYdX2UKGgGR0Cey5lHz6JqaAdN6ANoCEdAmoKFeSjgynVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 31250, "n_steps": 8, "gamma": 0.99, "gae_lambda": 0.9, "ent_coef": 0.0, "vf_coef": 0.4, "max_grad_norm": 0.5, "normalize_advantage": false, "system_info": {"OS": "Linux-5.10.0-20-amd64-x86_64-with-glibc2.31 # 1 SMP Debian 5.10.158-2 (2022-12-13)", "Python": "3.9.14", "Stable-Baselines3": "1.8.0a2", "PyTorch": "1.13.1+cu117", "GPU Enabled": "True", "Numpy": "1.24.2", "Gym": "0.21.0"}}
|
replay.mp4
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:8d150913d8c5066c5e2fc3ac84706986a521ad26cad41780cd1029b2db998b20
|
3 |
+
size 1074579
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": 1949.0440048910677, "std_reward": 128.8568806999962, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-03-10T19:46:00.759484"}
|
vec_normalize.pkl
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:12bb4872d57e17c491bea90f16f00a0bf69e1998a1f831a39843f6ce2387ce9b
|
3 |
+
size 2136
|