Create README.md
Browse files
README.md
ADDED
@@ -0,0 +1,58 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: apache-2.0
|
3 |
+
language:
|
4 |
+
- zh
|
5 |
+
base_model:
|
6 |
+
- THUDM/glm-4-9b
|
7 |
+
pipeline_tag: text-generation
|
8 |
+
---
|
9 |
+
# MentalGLM is a series of large language models designed for mental health analysis tasks in Chinese.
|
10 |
+
We have developed the MentalGLM series, the first Chinese open-source interpretable large language models for mental health analysis, based on GLM-4-9b and GLM-4-9b-chat.
|
11 |
+
|
12 |
+
## How to use
|
13 |
+
|
14 |
+
```bash
|
15 |
+
import torch
|
16 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer
|
17 |
+
|
18 |
+
device = "cuda"
|
19 |
+
|
20 |
+
tokenizer = AutoTokenizer.from_pretrained("zwzzz/MentalGLM", trust_remote_code=True)
|
21 |
+
|
22 |
+
query = "考虑以下这个帖子,帖子体现了什么认知路径?这已经够糟糕的了。不过在那一周我将完全失去我的支持。我没有什么可期待的。"
|
23 |
+
|
24 |
+
inputs = tokenizer.apply_chat_template([{"role": "user", "content": query}],
|
25 |
+
add_generation_prompt=True,
|
26 |
+
tokenize=True,
|
27 |
+
return_tensors="pt",
|
28 |
+
return_dict=True
|
29 |
+
)
|
30 |
+
|
31 |
+
inputs = inputs.to(device)
|
32 |
+
model = AutoModelForCausalLM.from_pretrained(
|
33 |
+
"zwzzz/MentalGLM",
|
34 |
+
torch_dtype=torch.bfloat16,
|
35 |
+
low_cpu_mem_usage=True,
|
36 |
+
trust_remote_code=True
|
37 |
+
).to(device).eval()
|
38 |
+
|
39 |
+
gen_kwargs = {"max_length": 1000, "do_sample": True, "top_k": 1}
|
40 |
+
with torch.no_grad():
|
41 |
+
outputs = model.generate(**inputs, **gen_kwargs)
|
42 |
+
outputs = outputs[:, inputs['input_ids'].shape[1]:]
|
43 |
+
print(tokenizer.decode(outputs[0], skip_special_tokens=True))
|
44 |
+
```
|
45 |
+
|
46 |
+
## Citation
|
47 |
+
|
48 |
+
If you find the technical report or resource is useful, please cite the following technical report in your paper.
|
49 |
+
|
50 |
+
Article address:[https://arxiv.org/pdf/2410.10323.pdf](https://arxiv.org/pdf/2410.10323.pdf)
|
51 |
+
```bash
|
52 |
+
@article{zhai2024mentalglm,
|
53 |
+
title={MentalGLM Series: Explainable Large Language Models for Mental Health Analysis on Chinese Social Media},
|
54 |
+
author={Zhai, Wei and Bai, Nan and Zhao, Qing and Li, Jianqiang and Wang, Fan and Qi, Hongzhi and Jiang, Meng and Wang, Xiaoqin and Yang, Bing Xiang and Fu, Guanghui},
|
55 |
+
journal={arXiv preprint arXiv:2410.10323},
|
56 |
+
year={2024}
|
57 |
+
}
|
58 |
+
```
|