Upload modeling_phi3.py
Browse files- modeling_phi3.py +6 -65
modeling_phi3.py
CHANGED
@@ -95,66 +95,6 @@ class TokenIdNode(Node):
|
|
95 |
self.prob = kwargs.get('prob', np.float32(0.0))
|
96 |
|
97 |
|
98 |
-
def split_tree(soup: bs4.BeautifulSoup, max_node_words=0) -> List[Tuple[bs4.element.Tag, List[str], bool]]:
|
99 |
-
word_count = len(soup.get_text().split())
|
100 |
-
if word_count > max_node_words:
|
101 |
-
possible_trees = [(soup, [])]
|
102 |
-
target_trees = [] # [(tag, path, is_leaf)]
|
103 |
-
# split the entire dom tee into subtrees, until the length of the subtree is less than max_node_words words
|
104 |
-
# find all possible trees
|
105 |
-
while True:
|
106 |
-
if len(possible_trees) == 0:
|
107 |
-
break
|
108 |
-
tree = possible_trees.pop(0)
|
109 |
-
tag_children = defaultdict(int)
|
110 |
-
bare_word_count = 0
|
111 |
-
# count child tags
|
112 |
-
for child in tree[0].contents:
|
113 |
-
if isinstance(child, bs4.element.Tag):
|
114 |
-
tag_children[child.name] += 1
|
115 |
-
_tag_children = {k: 0 for k in tag_children.keys()}
|
116 |
-
|
117 |
-
# check if the tree can be split
|
118 |
-
for child in tree[0].contents:
|
119 |
-
if isinstance(child, bs4.element.Tag):
|
120 |
-
# change child tag with duplicate names
|
121 |
-
if tag_children[child.name] > 1:
|
122 |
-
new_name = f"{child.name}{_tag_children[child.name]}"
|
123 |
-
new_tree = (child, tree[1] + [new_name])
|
124 |
-
_tag_children[child.name] += 1
|
125 |
-
child.name = new_name
|
126 |
-
else:
|
127 |
-
new_tree = (child, tree[1] + [child.name])
|
128 |
-
word_count = len(child.get_text().split())
|
129 |
-
# add node with more than max_node_words words, and recursion depth is less than 64
|
130 |
-
if word_count > max_node_words and len(new_tree[1]) < 64:
|
131 |
-
possible_trees.append(new_tree)
|
132 |
-
else:
|
133 |
-
target_trees.append((new_tree[0], new_tree[1], True))
|
134 |
-
else:
|
135 |
-
bare_word_count += len(str(child).split())
|
136 |
-
|
137 |
-
# add leaf node
|
138 |
-
if len(tag_children) == 0:
|
139 |
-
target_trees.append((tree[0], tree[1], True))
|
140 |
-
# add node with more than max_node_words bare words
|
141 |
-
elif bare_word_count > max_node_words:
|
142 |
-
target_trees.append((tree[0], tree[1], False))
|
143 |
-
else:
|
144 |
-
soup_children = [c for c in soup.contents if isinstance(c, bs4.element.Tag)]
|
145 |
-
if len(soup_children) == 1:
|
146 |
-
target_trees = [(soup_children[0], [soup_children[0].name], True)]
|
147 |
-
else:
|
148 |
-
# add an html tag to wrap all children
|
149 |
-
new_soup = bs4.BeautifulSoup("", 'html.parser')
|
150 |
-
new_tag = new_soup.new_tag("html")
|
151 |
-
new_soup.append(new_tag)
|
152 |
-
for child in soup_children:
|
153 |
-
new_tag.append(child)
|
154 |
-
target_trees = [(new_tag, ["html"], True)]
|
155 |
-
return target_trees
|
156 |
-
|
157 |
-
|
158 |
logger = logging.get_logger(__name__)
|
159 |
|
160 |
# Transformers scans dependencies in the modeling file, causing issues on conditional loading. The regex only ignores try/catch blocks, but not if statements
|
@@ -1887,6 +1827,7 @@ class PHI3ForHTMLTreeGeneration(Phi3PreTrainedModel):
|
|
1887 |
tokenizer,
|
1888 |
query: List[str],
|
1889 |
htmls: List[List[str]],
|
|
|
1890 |
**kwargs):
|
1891 |
max_seq_length = kwargs.pop("max_seq_length", 131072)
|
1892 |
def apply_html_tree_template(query, htmls):
|
@@ -1922,11 +1863,11 @@ class PHI3ForHTMLTreeGeneration(Phi3PreTrainedModel):
|
|
1922 |
soup.append(bs4.BeautifulSoup(html, 'html.parser'))
|
1923 |
|
1924 |
token_id_paths = []
|
1925 |
-
|
1926 |
-
is_leaf = [p[2] for p in
|
1927 |
-
|
1928 |
|
1929 |
-
for path in
|
1930 |
path_str = "<" + "><".join(path) + ">"
|
1931 |
token_ids = tokenizer.encode(path_str, add_special_tokens=False)
|
1932 |
token_id_paths.append(token_ids)
|
@@ -1982,7 +1923,7 @@ class PHI3ForHTMLTreeGeneration(Phi3PreTrainedModel):
|
|
1982 |
|
1983 |
res_html_refs.append({
|
1984 |
"html": str(soup),
|
1985 |
-
"paths":
|
1986 |
"is_leaf": is_leaf,
|
1987 |
"path_token_ids": token_id_paths,
|
1988 |
"node_tree": list(TokenDotExporter(root, nodenamefunc=nodenamefunc))
|
|
|
95 |
self.prob = kwargs.get('prob', np.float32(0.0))
|
96 |
|
97 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
98 |
logger = logging.get_logger(__name__)
|
99 |
|
100 |
# Transformers scans dependencies in the modeling file, causing issues on conditional loading. The regex only ignores try/catch blocks, but not if statements
|
|
|
1827 |
tokenizer,
|
1828 |
query: List[str],
|
1829 |
htmls: List[List[str]],
|
1830 |
+
block_tree: List[Tuple],
|
1831 |
**kwargs):
|
1832 |
max_seq_length = kwargs.pop("max_seq_length", 131072)
|
1833 |
def apply_html_tree_template(query, htmls):
|
|
|
1863 |
soup.append(bs4.BeautifulSoup(html, 'html.parser'))
|
1864 |
|
1865 |
token_id_paths = []
|
1866 |
+
_block_tree = block_tree[idx]
|
1867 |
+
is_leaf = [p[2] for p in _block_tree]
|
1868 |
+
_block_tree = [p[1] for p in _block_tree]
|
1869 |
|
1870 |
+
for path in _block_tree:
|
1871 |
path_str = "<" + "><".join(path) + ">"
|
1872 |
token_ids = tokenizer.encode(path_str, add_special_tokens=False)
|
1873 |
token_id_paths.append(token_ids)
|
|
|
1923 |
|
1924 |
res_html_refs.append({
|
1925 |
"html": str(soup),
|
1926 |
+
"paths": _block_tree,
|
1927 |
"is_leaf": is_leaf,
|
1928 |
"path_token_ids": token_id_paths,
|
1929 |
"node_tree": list(TokenDotExporter(root, nodenamefunc=nodenamefunc))
|