zoeye123 commited on
Commit
7139577
·
verified ·
1 Parent(s): f3cd89d

Model save

Browse files
README.md ADDED
@@ -0,0 +1,68 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model: deepseek-ai/DeepSeek-R1-Distill-Qwen-1.5B
3
+ library_name: transformers
4
+ model_name: DeepSeek-R1-Distill-Qwen-1.5B-GRPO
5
+ tags:
6
+ - generated_from_trainer
7
+ - trl
8
+ - grpo
9
+ licence: license
10
+ ---
11
+
12
+ # Model Card for DeepSeek-R1-Distill-Qwen-1.5B-GRPO
13
+
14
+ This model is a fine-tuned version of [deepseek-ai/DeepSeek-R1-Distill-Qwen-1.5B](https://huggingface.co/deepseek-ai/DeepSeek-R1-Distill-Qwen-1.5B).
15
+ It has been trained using [TRL](https://github.com/huggingface/trl).
16
+
17
+ ## Quick start
18
+
19
+ ```python
20
+ from transformers import pipeline
21
+
22
+ question = "If you had a time machine, but could only go to the past or the future once and never return, which would you choose and why?"
23
+ generator = pipeline("text-generation", model="zoeye123/DeepSeek-R1-Distill-Qwen-1.5B-GRPO", device="cuda")
24
+ output = generator([{"role": "user", "content": question}], max_new_tokens=128, return_full_text=False)[0]
25
+ print(output["generated_text"])
26
+ ```
27
+
28
+ ## Training procedure
29
+
30
+ [<img src="https://raw.githubusercontent.com/wandb/assets/main/wandb-github-badge-28.svg" alt="Visualize in Weights & Biases" width="150" height="24"/>](https://wandb.ai/yeshugno-microsoft/huggingface/runs/x9spl3vt)
31
+
32
+
33
+ This model was trained with GRPO, a method introduced in [DeepSeekMath: Pushing the Limits of Mathematical Reasoning in Open Language Models](https://huggingface.co/papers/2402.03300).
34
+
35
+ ### Framework versions
36
+
37
+ - TRL: 0.16.0.dev0
38
+ - Transformers: 4.49.0.dev0
39
+ - Pytorch: 2.5.1
40
+ - Datasets: 3.3.0
41
+ - Tokenizers: 0.21.0
42
+
43
+ ## Citations
44
+
45
+ Cite GRPO as:
46
+
47
+ ```bibtex
48
+ @article{zhihong2024deepseekmath,
49
+ title = {{DeepSeekMath: Pushing the Limits of Mathematical Reasoning in Open Language Models}},
50
+ author = {Zhihong Shao and Peiyi Wang and Qihao Zhu and Runxin Xu and Junxiao Song and Mingchuan Zhang and Y. K. Li and Y. Wu and Daya Guo},
51
+ year = 2024,
52
+ eprint = {arXiv:2402.03300},
53
+ }
54
+
55
+ ```
56
+
57
+ Cite TRL as:
58
+
59
+ ```bibtex
60
+ @misc{vonwerra2022trl,
61
+ title = {{TRL: Transformer Reinforcement Learning}},
62
+ author = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang and Kashif Rasul and Quentin Gallouédec},
63
+ year = 2020,
64
+ journal = {GitHub repository},
65
+ publisher = {GitHub},
66
+ howpublished = {\url{https://github.com/huggingface/trl}}
67
+ }
68
+ ```
all_results.json ADDED
@@ -0,0 +1,8 @@
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "total_flos": 0.0,
3
+ "train_loss": 2.7939677238464355e-09,
4
+ "train_runtime": 254.4903,
5
+ "train_samples": 10,
6
+ "train_samples_per_second": 0.039,
7
+ "train_steps_per_second": 0.008
8
+ }
generation_config.json ADDED
@@ -0,0 +1,9 @@
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_from_model_config": true,
3
+ "bos_token_id": 151646,
4
+ "do_sample": true,
5
+ "eos_token_id": 151643,
6
+ "temperature": 0.6,
7
+ "top_p": 0.95,
8
+ "transformers_version": "4.49.0.dev0"
9
+ }
train_results.json ADDED
@@ -0,0 +1,8 @@
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "total_flos": 0.0,
3
+ "train_loss": 2.7939677238464355e-09,
4
+ "train_runtime": 254.4903,
5
+ "train_samples": 10,
6
+ "train_samples_per_second": 0.039,
7
+ "train_steps_per_second": 0.008
8
+ }
trainer_state.json ADDED
@@ -0,0 +1,68 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "best_metric": null,
3
+ "best_model_checkpoint": null,
4
+ "epoch": 0.8,
5
+ "eval_steps": 500,
6
+ "global_step": 2,
7
+ "is_hyper_param_search": false,
8
+ "is_local_process_zero": true,
9
+ "is_world_process_zero": true,
10
+ "log_history": [
11
+ {
12
+ "completion_length": 1842.03125,
13
+ "epoch": 0.4,
14
+ "grad_norm": 0.0,
15
+ "kl": 0.0,
16
+ "learning_rate": 0.0,
17
+ "loss": 0.0,
18
+ "reward": 0.125,
19
+ "reward_std": 0.13363061845302582,
20
+ "rewards/accuracy_reward": 0.125,
21
+ "rewards/format_reward": 0.0,
22
+ "step": 1
23
+ },
24
+ {
25
+ "completion_length": 1805.84375,
26
+ "epoch": 0.8,
27
+ "grad_norm": 0.0,
28
+ "kl": 0.0,
29
+ "learning_rate": 0.0,
30
+ "loss": 0.0,
31
+ "reward": 0.125,
32
+ "reward_std": 0.13363061845302582,
33
+ "rewards/accuracy_reward": 0.125,
34
+ "rewards/format_reward": 0.0,
35
+ "step": 2
36
+ },
37
+ {
38
+ "epoch": 0.8,
39
+ "step": 2,
40
+ "total_flos": 0.0,
41
+ "train_loss": 2.7939677238464355e-09,
42
+ "train_runtime": 254.4903,
43
+ "train_samples_per_second": 0.039,
44
+ "train_steps_per_second": 0.008
45
+ }
46
+ ],
47
+ "logging_steps": 1,
48
+ "max_steps": 2,
49
+ "num_input_tokens_seen": 0,
50
+ "num_train_epochs": 1,
51
+ "save_steps": 500,
52
+ "stateful_callbacks": {
53
+ "TrainerControl": {
54
+ "args": {
55
+ "should_epoch_stop": false,
56
+ "should_evaluate": false,
57
+ "should_log": false,
58
+ "should_save": true,
59
+ "should_training_stop": true
60
+ },
61
+ "attributes": {}
62
+ }
63
+ },
64
+ "total_flos": 0.0,
65
+ "train_batch_size": 4,
66
+ "trial_name": null,
67
+ "trial_params": null
68
+ }