zihoo commited on
Commit
6e7f3b2
·
verified ·
1 Parent(s): dd2e56b

Add new SentenceTransformer model.

Browse files
1_Pooling/config.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "word_embedding_dimension": 384,
3
+ "pooling_mode_cls_token": false,
4
+ "pooling_mode_mean_tokens": true,
5
+ "pooling_mode_max_tokens": false,
6
+ "pooling_mode_mean_sqrt_len_tokens": false,
7
+ "pooling_mode_weightedmean_tokens": false,
8
+ "pooling_mode_lasttoken": false,
9
+ "include_prompt": true
10
+ }
README.md ADDED
@@ -0,0 +1,388 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ tags:
3
+ - sentence-transformers
4
+ - sentence-similarity
5
+ - feature-extraction
6
+ - generated_from_trainer
7
+ - dataset_size:4000
8
+ - loss:ContrastiveLoss
9
+ base_model: sentence-transformers/all-MiniLM-L6-v2
10
+ widget:
11
+ - source_sentence: I'm reluctant to involve this person in my plans.
12
+ sentences:
13
+ - I doubt the honesty of this person's intentions.
14
+ - I anticipate deception in this person's actions.
15
+ - I feel vulnerable in the presence of this individual.
16
+ - source_sentence: I resist sharing vulnerabilities with this individual.
17
+ sentences:
18
+ - I feel cautious and protective around this person.
19
+ - My instincts prompt me to stay guarded around this person.
20
+ - I keep my problems to myself around this person.
21
+ - source_sentence: I will not seek advice from this person.
22
+ sentences:
23
+ - Doubts haunt me in interactions with this individual.
24
+ - Anxiety grips me in this person's presence.
25
+ - Trusting this person feels like a potential risk.
26
+ - source_sentence: This person can't be counted on for confidentiality.
27
+ sentences:
28
+ - I feel defensive when this person is involved.
29
+ - This person seems unreliable in keeping promises.
30
+ - I sidestep leaving my belongings unguarded around this person.
31
+ - source_sentence: I imagine this person seeking to outsmart me.
32
+ sentences:
33
+ - I sidestep financial dealings with this person.
34
+ - I hesitate to engage deeply with this person.
35
+ - This individual's integrity seems compromised.
36
+ pipeline_tag: sentence-similarity
37
+ library_name: sentence-transformers
38
+ ---
39
+
40
+ # SentenceTransformer based on sentence-transformers/all-MiniLM-L6-v2
41
+
42
+ This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [sentence-transformers/all-MiniLM-L6-v2](https://huggingface.co/sentence-transformers/all-MiniLM-L6-v2). It maps sentences & paragraphs to a 384-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
43
+
44
+ ## Model Details
45
+
46
+ ### Model Description
47
+ - **Model Type:** Sentence Transformer
48
+ - **Base model:** [sentence-transformers/all-MiniLM-L6-v2](https://huggingface.co/sentence-transformers/all-MiniLM-L6-v2) <!-- at revision fa97f6e7cb1a59073dff9e6b13e2715cf7475ac9 -->
49
+ - **Maximum Sequence Length:** 256 tokens
50
+ - **Output Dimensionality:** 384 dimensions
51
+ - **Similarity Function:** Cosine Similarity
52
+ <!-- - **Training Dataset:** Unknown -->
53
+ <!-- - **Language:** Unknown -->
54
+ <!-- - **License:** Unknown -->
55
+
56
+ ### Model Sources
57
+
58
+ - **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
59
+ - **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
60
+ - **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
61
+
62
+ ### Full Model Architecture
63
+
64
+ ```
65
+ SentenceTransformer(
66
+ (0): Transformer({'max_seq_length': 256, 'do_lower_case': False}) with Transformer model: BertModel
67
+ (1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
68
+ (2): Normalize()
69
+ )
70
+ ```
71
+
72
+ ## Usage
73
+
74
+ ### Direct Usage (Sentence Transformers)
75
+
76
+ First install the Sentence Transformers library:
77
+
78
+ ```bash
79
+ pip install -U sentence-transformers
80
+ ```
81
+
82
+ Then you can load this model and run inference.
83
+ ```python
84
+ from sentence_transformers import SentenceTransformer
85
+
86
+ # Download from the 🤗 Hub
87
+ model = SentenceTransformer("zihoo/all-MiniLM-L6-v2-IDT-contrasive")
88
+ # Run inference
89
+ sentences = [
90
+ 'I imagine this person seeking to outsmart me.',
91
+ "This individual's integrity seems compromised.",
92
+ 'I hesitate to engage deeply with this person.',
93
+ ]
94
+ embeddings = model.encode(sentences)
95
+ print(embeddings.shape)
96
+ # [3, 384]
97
+
98
+ # Get the similarity scores for the embeddings
99
+ similarities = model.similarity(embeddings, embeddings)
100
+ print(similarities.shape)
101
+ # [3, 3]
102
+ ```
103
+
104
+ <!--
105
+ ### Direct Usage (Transformers)
106
+
107
+ <details><summary>Click to see the direct usage in Transformers</summary>
108
+
109
+ </details>
110
+ -->
111
+
112
+ <!--
113
+ ### Downstream Usage (Sentence Transformers)
114
+
115
+ You can finetune this model on your own dataset.
116
+
117
+ <details><summary>Click to expand</summary>
118
+
119
+ </details>
120
+ -->
121
+
122
+ <!--
123
+ ### Out-of-Scope Use
124
+
125
+ *List how the model may foreseeably be misused and address what users ought not to do with the model.*
126
+ -->
127
+
128
+ <!--
129
+ ## Bias, Risks and Limitations
130
+
131
+ *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
132
+ -->
133
+
134
+ <!--
135
+ ### Recommendations
136
+
137
+ *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
138
+ -->
139
+
140
+ ## Training Details
141
+
142
+ ### Training Dataset
143
+
144
+ #### Unnamed Dataset
145
+
146
+ * Size: 4,000 training samples
147
+ * Columns: <code>sentence1</code>, <code>sentence2</code>, and <code>label</code>
148
+ * Approximate statistics based on the first 1000 samples:
149
+ | | sentence1 | sentence2 | label |
150
+ |:--------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:------------------------------------------------|
151
+ | type | string | string | int |
152
+ | details | <ul><li>min: 8 tokens</li><li>mean: 12.15 tokens</li><li>max: 16 tokens</li></ul> | <ul><li>min: 8 tokens</li><li>mean: 12.28 tokens</li><li>max: 16 tokens</li></ul> | <ul><li>0: ~67.00%</li><li>1: ~33.00%</li></ul> |
153
+ * Samples:
154
+ | sentence1 | sentence2 | label |
155
+ |:------------------------------------------------------------------|:--------------------------------------------------------------|:---------------|
156
+ | <code>This person's motivations seem deceptive.</code> | <code>I doubt the honesty of this person's intentions.</code> | <code>1</code> |
157
+ | <code>This person can't be counted on for confidentiality.</code> | <code>I don't risk vulnerability to this individual.</code> | <code>0</code> |
158
+ | <code>I maintain emotional distance from this person.</code> | <code>I shun forming close bonds with this individual.</code> | <code>1</code> |
159
+ * Loss: [<code>ContrastiveLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#contrastiveloss) with these parameters:
160
+ ```json
161
+ {
162
+ "distance_metric": "SiameseDistanceMetric.COSINE_DISTANCE",
163
+ "margin": 0.3,
164
+ "size_average": true
165
+ }
166
+ ```
167
+
168
+ ### Evaluation Dataset
169
+
170
+ #### Unnamed Dataset
171
+
172
+ * Size: 1,000 evaluation samples
173
+ * Columns: <code>sentence1</code>, <code>sentence2</code>, and <code>label</code>
174
+ * Approximate statistics based on the first 1000 samples:
175
+ | | sentence1 | sentence2 | label |
176
+ |:--------|:----------------------------------------------------------------------------------|:---------------------------------------------------------------------------------|:------------------------------------------------|
177
+ | type | string | string | int |
178
+ | details | <ul><li>min: 8 tokens</li><li>mean: 12.36 tokens</li><li>max: 16 tokens</li></ul> | <ul><li>min: 8 tokens</li><li>mean: 12.3 tokens</li><li>max: 16 tokens</li></ul> | <ul><li>0: ~67.00%</li><li>1: ~33.00%</li></ul> |
179
+ * Samples:
180
+ | sentence1 | sentence2 | label |
181
+ |:-------------------------------------------------------------------|:-------------------------------------------------------------------|:---------------|
182
+ | <code>I question the sincerity of this person's words.</code> | <code>This person's presence leaves me with apprehension.</code> | <code>0</code> |
183
+ | <code>I feel vulnerable in the presence of this individual.</code> | <code>Doubts haunt me in interactions with this individual.</code> | <code>1</code> |
184
+ | <code>I doubt the honesty of this person's intentions.</code> | <code>My emotions feel unsettled around this person.</code> | <code>0</code> |
185
+ * Loss: [<code>ContrastiveLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#contrastiveloss) with these parameters:
186
+ ```json
187
+ {
188
+ "distance_metric": "SiameseDistanceMetric.COSINE_DISTANCE",
189
+ "margin": 0.3,
190
+ "size_average": true
191
+ }
192
+ ```
193
+
194
+ ### Training Hyperparameters
195
+ #### Non-Default Hyperparameters
196
+
197
+ - `eval_strategy`: steps
198
+ - `per_device_train_batch_size`: 32
199
+ - `per_device_eval_batch_size`: 32
200
+ - `learning_rate`: 5e-06
201
+ - `warmup_ratio`: 0.01
202
+
203
+ #### All Hyperparameters
204
+ <details><summary>Click to expand</summary>
205
+
206
+ - `overwrite_output_dir`: False
207
+ - `do_predict`: False
208
+ - `eval_strategy`: steps
209
+ - `prediction_loss_only`: True
210
+ - `per_device_train_batch_size`: 32
211
+ - `per_device_eval_batch_size`: 32
212
+ - `per_gpu_train_batch_size`: None
213
+ - `per_gpu_eval_batch_size`: None
214
+ - `gradient_accumulation_steps`: 1
215
+ - `eval_accumulation_steps`: None
216
+ - `torch_empty_cache_steps`: None
217
+ - `learning_rate`: 5e-06
218
+ - `weight_decay`: 0.0
219
+ - `adam_beta1`: 0.9
220
+ - `adam_beta2`: 0.999
221
+ - `adam_epsilon`: 1e-08
222
+ - `max_grad_norm`: 1.0
223
+ - `num_train_epochs`: 3
224
+ - `max_steps`: -1
225
+ - `lr_scheduler_type`: linear
226
+ - `lr_scheduler_kwargs`: {}
227
+ - `warmup_ratio`: 0.01
228
+ - `warmup_steps`: 0
229
+ - `log_level`: passive
230
+ - `log_level_replica`: warning
231
+ - `log_on_each_node`: True
232
+ - `logging_nan_inf_filter`: True
233
+ - `save_safetensors`: True
234
+ - `save_on_each_node`: False
235
+ - `save_only_model`: False
236
+ - `restore_callback_states_from_checkpoint`: False
237
+ - `no_cuda`: False
238
+ - `use_cpu`: False
239
+ - `use_mps_device`: False
240
+ - `seed`: 42
241
+ - `data_seed`: None
242
+ - `jit_mode_eval`: False
243
+ - `use_ipex`: False
244
+ - `bf16`: False
245
+ - `fp16`: False
246
+ - `fp16_opt_level`: O1
247
+ - `half_precision_backend`: auto
248
+ - `bf16_full_eval`: False
249
+ - `fp16_full_eval`: False
250
+ - `tf32`: None
251
+ - `local_rank`: 0
252
+ - `ddp_backend`: None
253
+ - `tpu_num_cores`: None
254
+ - `tpu_metrics_debug`: False
255
+ - `debug`: []
256
+ - `dataloader_drop_last`: False
257
+ - `dataloader_num_workers`: 0
258
+ - `dataloader_prefetch_factor`: None
259
+ - `past_index`: -1
260
+ - `disable_tqdm`: False
261
+ - `remove_unused_columns`: True
262
+ - `label_names`: None
263
+ - `load_best_model_at_end`: False
264
+ - `ignore_data_skip`: False
265
+ - `fsdp`: []
266
+ - `fsdp_min_num_params`: 0
267
+ - `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
268
+ - `fsdp_transformer_layer_cls_to_wrap`: None
269
+ - `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
270
+ - `deepspeed`: None
271
+ - `label_smoothing_factor`: 0.0
272
+ - `optim`: adamw_torch
273
+ - `optim_args`: None
274
+ - `adafactor`: False
275
+ - `group_by_length`: False
276
+ - `length_column_name`: length
277
+ - `ddp_find_unused_parameters`: None
278
+ - `ddp_bucket_cap_mb`: None
279
+ - `ddp_broadcast_buffers`: False
280
+ - `dataloader_pin_memory`: True
281
+ - `dataloader_persistent_workers`: False
282
+ - `skip_memory_metrics`: True
283
+ - `use_legacy_prediction_loop`: False
284
+ - `push_to_hub`: False
285
+ - `resume_from_checkpoint`: None
286
+ - `hub_model_id`: None
287
+ - `hub_strategy`: every_save
288
+ - `hub_private_repo`: None
289
+ - `hub_always_push`: False
290
+ - `gradient_checkpointing`: False
291
+ - `gradient_checkpointing_kwargs`: None
292
+ - `include_inputs_for_metrics`: False
293
+ - `include_for_metrics`: []
294
+ - `eval_do_concat_batches`: True
295
+ - `fp16_backend`: auto
296
+ - `push_to_hub_model_id`: None
297
+ - `push_to_hub_organization`: None
298
+ - `mp_parameters`:
299
+ - `auto_find_batch_size`: False
300
+ - `full_determinism`: False
301
+ - `torchdynamo`: None
302
+ - `ray_scope`: last
303
+ - `ddp_timeout`: 1800
304
+ - `torch_compile`: False
305
+ - `torch_compile_backend`: None
306
+ - `torch_compile_mode`: None
307
+ - `dispatch_batches`: None
308
+ - `split_batches`: None
309
+ - `include_tokens_per_second`: False
310
+ - `include_num_input_tokens_seen`: False
311
+ - `neftune_noise_alpha`: None
312
+ - `optim_target_modules`: None
313
+ - `batch_eval_metrics`: False
314
+ - `eval_on_start`: False
315
+ - `use_liger_kernel`: False
316
+ - `eval_use_gather_object`: False
317
+ - `average_tokens_across_devices`: False
318
+ - `prompts`: None
319
+ - `batch_sampler`: batch_sampler
320
+ - `multi_dataset_batch_sampler`: proportional
321
+
322
+ </details>
323
+
324
+ ### Training Logs
325
+ | Epoch | Step | Training Loss | Validation Loss |
326
+ |:-----:|:----:|:-------------:|:---------------:|
327
+ | 0.8 | 100 | 0.018 | 0.0091 |
328
+ | 1.6 | 200 | 0.0086 | 0.0069 |
329
+ | 2.4 | 300 | 0.0072 | 0.0056 |
330
+
331
+
332
+ ### Framework Versions
333
+ - Python: 3.11.11
334
+ - Sentence Transformers: 3.4.1
335
+ - Transformers: 4.48.2
336
+ - PyTorch: 2.5.1+cu124
337
+ - Accelerate: 1.3.0
338
+ - Datasets: 3.2.0
339
+ - Tokenizers: 0.21.0
340
+
341
+ ## Citation
342
+
343
+ ### BibTeX
344
+
345
+ #### Sentence Transformers
346
+ ```bibtex
347
+ @inproceedings{reimers-2019-sentence-bert,
348
+ title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
349
+ author = "Reimers, Nils and Gurevych, Iryna",
350
+ booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
351
+ month = "11",
352
+ year = "2019",
353
+ publisher = "Association for Computational Linguistics",
354
+ url = "https://arxiv.org/abs/1908.10084",
355
+ }
356
+ ```
357
+
358
+ #### ContrastiveLoss
359
+ ```bibtex
360
+ @inproceedings{hadsell2006dimensionality,
361
+ author={Hadsell, R. and Chopra, S. and LeCun, Y.},
362
+ booktitle={2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'06)},
363
+ title={Dimensionality Reduction by Learning an Invariant Mapping},
364
+ year={2006},
365
+ volume={2},
366
+ number={},
367
+ pages={1735-1742},
368
+ doi={10.1109/CVPR.2006.100}
369
+ }
370
+ ```
371
+
372
+ <!--
373
+ ## Glossary
374
+
375
+ *Clearly define terms in order to be accessible across audiences.*
376
+ -->
377
+
378
+ <!--
379
+ ## Model Card Authors
380
+
381
+ *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
382
+ -->
383
+
384
+ <!--
385
+ ## Model Card Contact
386
+
387
+ *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
388
+ -->
config.json ADDED
@@ -0,0 +1,26 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "sentence-transformers/all-MiniLM-L6-v2",
3
+ "architectures": [
4
+ "BertModel"
5
+ ],
6
+ "attention_probs_dropout_prob": 0.1,
7
+ "classifier_dropout": null,
8
+ "gradient_checkpointing": false,
9
+ "hidden_act": "gelu",
10
+ "hidden_dropout_prob": 0.1,
11
+ "hidden_size": 384,
12
+ "initializer_range": 0.02,
13
+ "intermediate_size": 1536,
14
+ "layer_norm_eps": 1e-12,
15
+ "max_position_embeddings": 512,
16
+ "model_type": "bert",
17
+ "num_attention_heads": 12,
18
+ "num_hidden_layers": 6,
19
+ "pad_token_id": 0,
20
+ "position_embedding_type": "absolute",
21
+ "torch_dtype": "float32",
22
+ "transformers_version": "4.48.2",
23
+ "type_vocab_size": 2,
24
+ "use_cache": true,
25
+ "vocab_size": 30522
26
+ }
config_sentence_transformers.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "__version__": {
3
+ "sentence_transformers": "3.4.1",
4
+ "transformers": "4.48.2",
5
+ "pytorch": "2.5.1+cu124"
6
+ },
7
+ "prompts": {},
8
+ "default_prompt_name": null,
9
+ "similarity_fn_name": "cosine"
10
+ }
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:c32dc797cf8807a96f0410b00ec2e9440b48537e21c83036f0bb73e83c7c32e8
3
+ size 90864192
modules.json ADDED
@@ -0,0 +1,20 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [
2
+ {
3
+ "idx": 0,
4
+ "name": "0",
5
+ "path": "",
6
+ "type": "sentence_transformers.models.Transformer"
7
+ },
8
+ {
9
+ "idx": 1,
10
+ "name": "1",
11
+ "path": "1_Pooling",
12
+ "type": "sentence_transformers.models.Pooling"
13
+ },
14
+ {
15
+ "idx": 2,
16
+ "name": "2",
17
+ "path": "2_Normalize",
18
+ "type": "sentence_transformers.models.Normalize"
19
+ }
20
+ ]
sentence_bert_config.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "max_seq_length": 256,
3
+ "do_lower_case": false
4
+ }
special_tokens_map.json ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "cls_token": {
3
+ "content": "[CLS]",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "mask_token": {
10
+ "content": "[MASK]",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "pad_token": {
17
+ "content": "[PAD]",
18
+ "lstrip": false,
19
+ "normalized": false,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ },
23
+ "sep_token": {
24
+ "content": "[SEP]",
25
+ "lstrip": false,
26
+ "normalized": false,
27
+ "rstrip": false,
28
+ "single_word": false
29
+ },
30
+ "unk_token": {
31
+ "content": "[UNK]",
32
+ "lstrip": false,
33
+ "normalized": false,
34
+ "rstrip": false,
35
+ "single_word": false
36
+ }
37
+ }
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer_config.json ADDED
@@ -0,0 +1,65 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "added_tokens_decoder": {
3
+ "0": {
4
+ "content": "[PAD]",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false,
9
+ "special": true
10
+ },
11
+ "100": {
12
+ "content": "[UNK]",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false,
17
+ "special": true
18
+ },
19
+ "101": {
20
+ "content": "[CLS]",
21
+ "lstrip": false,
22
+ "normalized": false,
23
+ "rstrip": false,
24
+ "single_word": false,
25
+ "special": true
26
+ },
27
+ "102": {
28
+ "content": "[SEP]",
29
+ "lstrip": false,
30
+ "normalized": false,
31
+ "rstrip": false,
32
+ "single_word": false,
33
+ "special": true
34
+ },
35
+ "103": {
36
+ "content": "[MASK]",
37
+ "lstrip": false,
38
+ "normalized": false,
39
+ "rstrip": false,
40
+ "single_word": false,
41
+ "special": true
42
+ }
43
+ },
44
+ "clean_up_tokenization_spaces": false,
45
+ "cls_token": "[CLS]",
46
+ "do_basic_tokenize": true,
47
+ "do_lower_case": true,
48
+ "extra_special_tokens": {},
49
+ "mask_token": "[MASK]",
50
+ "max_length": 128,
51
+ "model_max_length": 256,
52
+ "never_split": null,
53
+ "pad_to_multiple_of": null,
54
+ "pad_token": "[PAD]",
55
+ "pad_token_type_id": 0,
56
+ "padding_side": "right",
57
+ "sep_token": "[SEP]",
58
+ "stride": 0,
59
+ "strip_accents": null,
60
+ "tokenize_chinese_chars": true,
61
+ "tokenizer_class": "BertTokenizer",
62
+ "truncation_side": "right",
63
+ "truncation_strategy": "longest_first",
64
+ "unk_token": "[UNK]"
65
+ }
vocab.txt ADDED
The diff for this file is too large to render. See raw diff