--- base_model: - Qwen/Qwen2.5-32B-Instruct --- ## Model Overview This repository, `ModelFuture-Distill-Qwen-32B-SFT-v1`, is designed for testing purposes. We directly apply Supervised Fine-Tuning (SFT) to the base model. ## Intended Use This model is primarily intended for testing and validation purposes. It can be used to: - Evaluate the performance of the distilled model on various tasks. - Test the functionality and robustness of the model in different environments. - Provide a baseline for further development and optimization. Here provides a code snippet with `apply_chat_template` to show you how to load the tokenizer and model and how to generate contents. ```python from transformers import AutoModelForCausalLM, AutoTokenizer model_name = "zhuguoku/ModelFuture-Distill-Qwen-32B-SFT-v1" model = AutoModelForCausalLM.from_pretrained( model_name, torch_dtype="auto", device_map="auto" ) tokenizer = AutoTokenizer.from_pretrained(model_name) prompt = "我想锻炼身体,给我提供一些建议。" messages = [ {"role": "system", "content": "You are a helpful assistant."}, {"role": "user", "content": prompt} ] text = tokenizer.apply_chat_template( messages, tokenize=False, add_generation_prompt=True ) model_inputs = tokenizer([text], return_tensors="pt").to(model.device) generated_ids = model.generate( **model_inputs, max_new_tokens=512 ) generated_ids = [ output_ids[len(input_ids):] for input_ids, output_ids in zip(model_inputs.input_ids, generated_ids) ] response = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0] ```