|
2024-09-21 17:32:30,446 - mmdet - INFO - Environment info: |
|
------------------------------------------------------------ |
|
sys.platform: linux |
|
Python: 3.8.19 (default, Mar 20 2024, 19:58:24) [GCC 11.2.0] |
|
CUDA available: True |
|
GPU 0,1,2,3,4,5,6,7: NVIDIA RTX A5000 |
|
CUDA_HOME: /data/home/hanbo/cuda-11.6 |
|
NVCC: Cuda compilation tools, release 11.6, V11.6.55 |
|
GCC: gcc (Ubuntu 9.4.0-1ubuntu1~20.04.2) 9.4.0 |
|
PyTorch: 1.12.1+cu116 |
|
PyTorch compiling details: PyTorch built with: |
|
- GCC 9.3 |
|
- C++ Version: 201402 |
|
- Intel(R) Math Kernel Library Version 2020.0.0 Product Build 20191122 for Intel(R) 64 architecture applications |
|
- Intel(R) MKL-DNN v2.6.0 (Git Hash 52b5f107dd9cf10910aaa19cb47f3abf9b349815) |
|
- OpenMP 201511 (a.k.a. OpenMP 4.5) |
|
- LAPACK is enabled (usually provided by MKL) |
|
- NNPACK is enabled |
|
- CPU capability usage: AVX2 |
|
- CUDA Runtime 11.6 |
|
- NVCC architecture flags: -gencode;arch=compute_37,code=sm_37;-gencode;arch=compute_50,code=sm_50;-gencode;arch=compute_60,code=sm_60;-gencode;arch=compute_70,code=sm_70;-gencode;arch=compute_75,code=sm_75;-gencode;arch=compute_80,code=sm_80;-gencode;arch=compute_86,code=sm_86 |
|
- CuDNN 8.3.2 (built against CUDA 11.5) |
|
- Magma 2.6.1 |
|
- Build settings: BLAS_INFO=mkl, BUILD_TYPE=Release, CUDA_VERSION=11.6, CUDNN_VERSION=8.3.2, CXX_COMPILER=/opt/rh/devtoolset-9/root/usr/bin/c++, CXX_FLAGS= -fabi-version=11 -Wno-deprecated -fvisibility-inlines-hidden -DUSE_PTHREADPOOL -fopenmp -DNDEBUG -DUSE_KINETO -DUSE_FBGEMM -DUSE_QNNPACK -DUSE_PYTORCH_QNNPACK -DUSE_XNNPACK -DSYMBOLICATE_MOBILE_DEBUG_HANDLE -DEDGE_PROFILER_USE_KINETO -O2 -fPIC -Wno-narrowing -Wall -Wextra -Werror=return-type -Wno-missing-field-initializers -Wno-type-limits -Wno-array-bounds -Wno-unknown-pragmas -Wno-unused-parameter -Wno-unused-function -Wno-unused-result -Wno-unused-local-typedefs -Wno-strict-overflow -Wno-strict-aliasing -Wno-error=deprecated-declarations -Wno-stringop-overflow -Wno-psabi -Wno-error=pedantic -Wno-error=redundant-decls -Wno-error=old-style-cast -fdiagnostics-color=always -faligned-new -Wno-unused-but-set-variable -Wno-maybe-uninitialized -fno-math-errno -fno-trapping-math -Werror=format -Werror=cast-function-type -Wno-stringop-overflow, LAPACK_INFO=mkl, PERF_WITH_AVX=1, PERF_WITH_AVX2=1, PERF_WITH_AVX512=1, TORCH_VERSION=1.12.1, USE_CUDA=ON, USE_CUDNN=ON, USE_EXCEPTION_PTR=1, USE_GFLAGS=OFF, USE_GLOG=OFF, USE_MKL=ON, USE_MKLDNN=OFF, USE_MPI=OFF, USE_NCCL=ON, USE_NNPACK=ON, USE_OPENMP=ON, USE_ROCM=OFF, |
|
|
|
TorchVision: 0.13.1+cu116 |
|
OpenCV: 4.10.0 |
|
MMCV: 1.7.2 |
|
MMCV Compiler: GCC 9.3 |
|
MMCV CUDA Compiler: 11.6 |
|
MMDetection: 2.28.2+d592e33 |
|
------------------------------------------------------------ |
|
|
|
2024-09-21 17:32:31,819 - mmdet - INFO - Distributed training: True |
|
2024-09-21 17:32:33,172 - mmdet - INFO - Config: |
|
norm_cfg = dict( |
|
type='BN', |
|
requires_grad=False, |
|
mean=[123.675, 116.28, 103.53], |
|
std=[1.0, 1.0, 1.0], |
|
to_rgb=True) |
|
model = dict( |
|
type='FasterRCNNRelAfford', |
|
backbone=dict( |
|
type='mmdet.ResNet', |
|
depth=101, |
|
num_stages=3, |
|
strides=(1, 2, 2), |
|
dilations=(1, 1, 1), |
|
out_indices=(2, ), |
|
frozen_stages=1, |
|
norm_cfg=dict(type='BN', requires_grad=False), |
|
norm_eval=True, |
|
style='caffe', |
|
init_cfg=dict( |
|
type='Pretrained', |
|
checkpoint='open-mmlab://detectron2/resnet101_caffe')), |
|
rpn_head=dict( |
|
type='mmdet.RPNHead', |
|
in_channels=1024, |
|
feat_channels=1024, |
|
anchor_generator=dict( |
|
type='AnchorGenerator', |
|
scales=[8, 16, 32], |
|
ratios=[0.33, 0.5, 1.0, 2.0, 3.0], |
|
strides=[16]), |
|
bbox_coder=dict( |
|
type='DeltaXYWHBBoxCoder', |
|
target_means=[0.0, 0.0, 0.0, 0.0], |
|
target_stds=[1.0, 1.0, 1.0, 1.0]), |
|
loss_cls=dict( |
|
type='mmdet.CrossEntropyLoss', use_sigmoid=True, loss_weight=1.0), |
|
loss_bbox=dict(type='mmdet.L1Loss', loss_weight=1.0)), |
|
roi_head=None, |
|
child_head=dict( |
|
type='invigorate.PairedRoIHead', |
|
shared_head=dict( |
|
type='invigorate.PairedResLayer', |
|
depth=50, |
|
stage=3, |
|
stride=1, |
|
style='caffe', |
|
norm_eval=False, |
|
share_weights=False), |
|
paired_roi_extractor=dict( |
|
type='invigorate.VMRNPairedRoIExtractor', |
|
roi_layer=dict(type='RoIPool', output_size=7), |
|
out_channels=1024, |
|
featmap_strides=[16]), |
|
relation_head=dict( |
|
type='invigorate.BBoxPairHead', |
|
with_avg_pool=True, |
|
roi_feat_size=7, |
|
in_channels=2048, |
|
num_relations=1, |
|
loss_cls=dict( |
|
type='mmdet.CrossEntropyLoss', |
|
use_sigmoid=False, |
|
loss_weight=1.0))), |
|
leaf_head=dict( |
|
type='mmdet.StandardRoIHead', |
|
shared_head=dict( |
|
type='mmdet.ResLayer', |
|
depth=50, |
|
stage=3, |
|
stride=1, |
|
style='caffe', |
|
norm_cfg=dict(type='BN', requires_grad=False), |
|
norm_eval=True), |
|
bbox_roi_extractor=dict( |
|
type='mmdet.SingleRoIExtractor', |
|
roi_layer=dict(type='RoIAlign', output_size=7, sampling_ratio=0), |
|
out_channels=1024, |
|
featmap_strides=[16]), |
|
bbox_head=dict( |
|
type='mmdet.BBoxHead', |
|
with_avg_pool=True, |
|
with_reg=False, |
|
roi_feat_size=7, |
|
in_channels=2048, |
|
num_classes=2, |
|
loss_cls=dict( |
|
type='mmdet.CrossEntropyLoss', |
|
use_sigmoid=False, |
|
loss_weight=1.0))), |
|
train_cfg=dict( |
|
rpn=dict( |
|
assigner=dict( |
|
type='MaxIoUAssigner', |
|
pos_iou_thr=0.7, |
|
neg_iou_thr=0.3, |
|
min_pos_iou=0.3, |
|
match_low_quality=True, |
|
ignore_iof_thr=-1), |
|
sampler=dict( |
|
type='RandomSampler', |
|
num=256, |
|
pos_fraction=0.5, |
|
neg_pos_ub=-1, |
|
add_gt_as_proposals=False), |
|
allowed_border=0, |
|
pos_weight=-1, |
|
debug=False), |
|
rpn_proposal=dict( |
|
nms_pre=12000, |
|
max_per_img=2000, |
|
nms=dict(type='nms', iou_threshold=0.7), |
|
min_bbox_size=0), |
|
rcnn=dict( |
|
assigner=dict( |
|
type='MaxIoUAssigner', |
|
pos_iou_thr=0.5, |
|
neg_iou_thr=0.5, |
|
min_pos_iou=0.5, |
|
match_low_quality=False, |
|
ignore_iof_thr=-1), |
|
sampler=dict( |
|
type='RandomSampler', |
|
num=256, |
|
pos_fraction=0.25, |
|
neg_pos_ub=-1, |
|
add_gt_as_proposals=True), |
|
pos_weight=-1, |
|
debug=False), |
|
child_head=dict( |
|
assigner=dict( |
|
type='MaxIoUAssigner', |
|
pos_iou_thr=0.7, |
|
neg_iou_thr=0.5, |
|
min_pos_iou=0.7, |
|
match_low_quality=False, |
|
ignore_iof_thr=-1), |
|
relation_sampler=dict( |
|
type='RandomRelationSampler', |
|
num=32, |
|
pos_fraction=0.5, |
|
cls_ratio_ub=1.0, |
|
add_gt_as_proposals=True, |
|
num_relation_cls=1, |
|
neg_id=0), |
|
pos_weight=-1, |
|
online_data=True, |
|
online_start_iteration=0), |
|
leaf_head=dict( |
|
assigner=dict( |
|
type='MaxIoUAssigner', |
|
pos_iou_thr=0.5, |
|
neg_iou_thr=0.5, |
|
min_pos_iou=0.5, |
|
match_low_quality=False, |
|
ignore_iof_thr=-1), |
|
sampler=dict( |
|
type='RandomSampler', |
|
num=64, |
|
pos_fraction=0.25, |
|
neg_pos_ub=3.0, |
|
add_gt_as_proposals=True), |
|
pos_weight=-1, |
|
debug=False)), |
|
test_cfg=dict( |
|
rpn=dict( |
|
nms_pre=6000, |
|
max_per_img=300, |
|
nms=dict(type='nms', iou_threshold=0.7), |
|
min_bbox_size=0), |
|
rcnn=dict( |
|
score_thr=0.05, |
|
nms=dict(type='nms', iou_threshold=0.3), |
|
max_per_img=100), |
|
child_head=dict( |
|
bbox_score_thr=0.5, verbose_relation=False, average_scores=False), |
|
leaf_head=dict(score_thr=0.5, nms=None, max_per_img=100))) |
|
dataset_type = 'REGRADAffordDataset' |
|
data_root = 'data/regrad/' |
|
img_norm_cfg = dict( |
|
mean=[123.675, 116.28, 103.53], std=[1.0, 1.0, 1.0], to_rgb=True) |
|
train_pipeline = [ |
|
dict(type='LoadImageFromFile', to_float32=True), |
|
dict( |
|
type='LoadAnnotationsCustom', |
|
keys=['gt_bboxes', 'gt_labels', 'gt_relchilds', 'gt_relleaves']), |
|
dict(type='RandomFlip', flip_ratio=0.5), |
|
dict(type='PhotoMetricDistortion'), |
|
dict( |
|
type='RandomCrop', crop_type='random_keep', allow_negative_crop=False), |
|
dict(type='Expand', mean=[123.675, 116.28, 103.53], ratio_range=(1, 2)), |
|
dict(type='Resize', img_scale=(1000, 600), keep_ratio=True), |
|
dict( |
|
type='Normalize', |
|
mean=[123.675, 116.28, 103.53], |
|
std=[1.0, 1.0, 1.0], |
|
to_rgb=True), |
|
dict(type='Pad', size_divisor=32), |
|
dict( |
|
type='DefaultFormatBundleCustom', |
|
keys=['img', 'gt_bboxes', 'gt_labels', 'gt_relchilds', |
|
'gt_relleaves']), |
|
dict( |
|
type='Collect', |
|
keys=['img', 'gt_bboxes', 'gt_labels', 'gt_relchilds', 'gt_relleaves']) |
|
] |
|
test_pipeline = [ |
|
dict(type='LoadImageFromFile'), |
|
dict(type='LoadRelationProposals'), |
|
dict( |
|
type='MultiScaleFlipAug', |
|
img_scale=(1000, 600), |
|
flip=False, |
|
transforms=[ |
|
dict(type='Resize', keep_ratio=True), |
|
dict( |
|
type='Normalize', |
|
mean=[123.675, 116.28, 103.53], |
|
std=[1.0, 1.0, 1.0], |
|
to_rgb=True), |
|
dict(type='Pad', size_divisor=32), |
|
dict(type='ImageToTensor', keys=['img']), |
|
dict(type='Collect', keys=['img', 'relation_proposals']) |
|
]) |
|
] |
|
data = dict( |
|
train=dict( |
|
_delete_=True, |
|
type='ConcatDataset', |
|
datasets=[ |
|
dict( |
|
type='REGRADAffordDataset', |
|
data_root='data/regrad/', |
|
meta_info_file='dataset_train_5k/meta_infos.json', |
|
ann_file='dataset_train_5k/objects.json', |
|
img_prefix='dataset_train_5k/RGBImages', |
|
seg_prefix='dataset_train_5k/SegmentationImages', |
|
depth_prefix='dataset_train_5k/DepthImages', |
|
pipeline=[ |
|
dict(type='LoadImageFromFile', to_float32=True), |
|
dict( |
|
type='LoadAnnotationsCustom', |
|
keys=[ |
|
'gt_bboxes', 'gt_labels', 'gt_relchilds', |
|
'gt_relleaves' |
|
]), |
|
dict(type='RandomFlip', flip_ratio=0.5), |
|
dict(type='PhotoMetricDistortion'), |
|
dict( |
|
type='RandomCrop', |
|
crop_type='random_keep', |
|
allow_negative_crop=False), |
|
dict(type='Expand', mean=[123.675, 116.28, 103.53]), |
|
dict( |
|
type='Resize', img_scale=(1000, 600), keep_ratio=True), |
|
dict( |
|
type='Normalize', |
|
mean=[123.675, 116.28, 103.53], |
|
std=[1.0, 1.0, 1.0], |
|
to_rgb=True), |
|
dict(type='Pad', size_divisor=32), |
|
dict( |
|
type='DefaultFormatBundleCustom', |
|
keys=[ |
|
'img', 'gt_bboxes', 'gt_labels', 'gt_relchilds', |
|
'gt_relleaves' |
|
]), |
|
dict( |
|
type='Collect', |
|
keys=[ |
|
'img', 'gt_bboxes', 'gt_labels', 'gt_relchilds', |
|
'gt_relleaves' |
|
]) |
|
], |
|
min_pos_relation=1, |
|
class_agnostic=True), |
|
dict( |
|
type='MetaGraspNetAffordDataset', |
|
data_root='data/metagraspnet/sim/', |
|
meta_info_file='meta_infos_train.json', |
|
pipeline=[ |
|
dict(type='LoadImageFromFile', to_float32=True), |
|
dict( |
|
type='LoadAnnotationsCustom', |
|
keys=[ |
|
'gt_bboxes', 'gt_labels', 'gt_relchilds', |
|
'gt_relleaves' |
|
]), |
|
dict(type='RandomFlip', flip_ratio=0.5), |
|
dict(type='PhotoMetricDistortion'), |
|
dict( |
|
type='RandomCrop', |
|
crop_type='random_keep', |
|
allow_negative_crop=False), |
|
dict( |
|
type='Expand', |
|
mean=[123.675, 116.28, 103.53], |
|
ratio_range=(1, 2)), |
|
dict( |
|
type='Resize', img_scale=(1000, 600), keep_ratio=True), |
|
dict( |
|
type='Normalize', |
|
mean=[123.675, 116.28, 103.53], |
|
std=[1.0, 1.0, 1.0], |
|
to_rgb=True), |
|
dict(type='Pad', size_divisor=32), |
|
dict( |
|
type='DefaultFormatBundleCustom', |
|
keys=[ |
|
'img', 'gt_bboxes', 'gt_labels', 'gt_relchilds', |
|
'gt_relleaves' |
|
]), |
|
dict( |
|
type='Collect', |
|
keys=[ |
|
'img', 'gt_bboxes', 'gt_labels', 'gt_relchilds', |
|
'gt_relleaves' |
|
]) |
|
], |
|
min_pos_relation=1, |
|
class_agnostic=True), |
|
dict( |
|
type='VMRDAffordDataset', |
|
ann_file='data/vmrd/ImageSets/Main/trainval.txt', |
|
img_prefix='data/vmrd/', |
|
pipeline=[ |
|
dict(type='LoadImageFromFile', to_float32=True), |
|
dict( |
|
type='LoadAnnotationsCustom', |
|
keys=[ |
|
'gt_bboxes', 'gt_labels', 'gt_relchilds', |
|
'gt_relleaves' |
|
]), |
|
dict(type='RandomFlip', flip_ratio=0.5), |
|
dict(type='PhotoMetricDistortion'), |
|
dict(type='Expand', mean=[123.675, 116.28, 103.53]), |
|
dict( |
|
type='Resize', img_scale=(1000, 600), keep_ratio=True), |
|
dict( |
|
type='Normalize', |
|
mean=[123.675, 116.28, 103.53], |
|
std=[1.0, 1.0, 1.0], |
|
to_rgb=True), |
|
dict(type='Pad', size_divisor=32), |
|
dict( |
|
type='DefaultFormatBundleCustom', |
|
keys=[ |
|
'img', 'gt_bboxes', 'gt_labels', 'gt_relchilds', |
|
'gt_relleaves' |
|
]), |
|
dict( |
|
type='Collect', |
|
keys=[ |
|
'img', 'gt_bboxes', 'gt_labels', 'gt_relchilds', |
|
'gt_relleaves' |
|
]) |
|
], |
|
class_agnostic=True), |
|
dict( |
|
type='VRDAffordDataset', |
|
data_root='data/vrd/', |
|
ann_file='sg_dataset/sg_train_annotations.json', |
|
img_prefix='sg_dataset/sg_train_images/', |
|
pipeline=[ |
|
dict(type='LoadImageFromFile', to_float32=True), |
|
dict( |
|
type='LoadAnnotationsCustom', |
|
keys=[ |
|
'gt_bboxes', 'gt_labels', 'gt_relchilds', |
|
'gt_relleaves' |
|
]), |
|
dict(type='RandomFlip', flip_ratio=0.5), |
|
dict( |
|
type='Resize', img_scale=(1000, 600), keep_ratio=True), |
|
dict( |
|
type='Normalize', |
|
mean=[123.675, 116.28, 103.53], |
|
std=[1.0, 1.0, 1.0], |
|
to_rgb=True), |
|
dict(type='Pad', size_divisor=32), |
|
dict( |
|
type='DefaultFormatBundleCustom', |
|
keys=[ |
|
'img', 'gt_bboxes', 'gt_labels', 'gt_relchilds', |
|
'gt_relleaves' |
|
]), |
|
dict( |
|
type='Collect', |
|
keys=[ |
|
'img', 'gt_bboxes', 'gt_labels', 'gt_relchilds', |
|
'gt_relleaves' |
|
]) |
|
], |
|
class_agnostic=True), |
|
dict( |
|
type='VGAffordDataset', |
|
data_root='data/vg/downloads', |
|
ann_file='relationships.json', |
|
img_prefix='', |
|
pipeline=[ |
|
dict(type='LoadImageFromFile', to_float32=True), |
|
dict( |
|
type='LoadAnnotationsCustom', |
|
keys=[ |
|
'gt_bboxes', 'gt_labels', 'gt_relchilds', |
|
'gt_relleaves' |
|
]), |
|
dict(type='RandomFlip', flip_ratio=0.5), |
|
dict( |
|
type='Resize', img_scale=(1000, 600), keep_ratio=True), |
|
dict( |
|
type='Normalize', |
|
mean=[123.675, 116.28, 103.53], |
|
std=[1.0, 1.0, 1.0], |
|
to_rgb=True), |
|
dict(type='Pad', size_divisor=32), |
|
dict( |
|
type='DefaultFormatBundleCustom', |
|
keys=[ |
|
'img', 'gt_bboxes', 'gt_labels', 'gt_relchilds', |
|
'gt_relleaves' |
|
]), |
|
dict( |
|
type='Collect', |
|
keys=[ |
|
'img', 'gt_bboxes', 'gt_labels', 'gt_relchilds', |
|
'gt_relleaves' |
|
]) |
|
], |
|
class_agnostic=True) |
|
], |
|
separate_eval=True, |
|
class_agnostic=True), |
|
val=dict( |
|
_delete_=True, |
|
type='ConcatDataset', |
|
datasets=[ |
|
dict( |
|
type='REGRADAffordDataset', |
|
data_root='data/regrad/', |
|
using_depth=False, |
|
using_gt_proposals=True, |
|
meta_info_file='dataset_seen_val_1k/meta_infos.json', |
|
ann_file='dataset_seen_val_1k/objects.json', |
|
img_prefix='dataset_seen_val_1k/RGBImages', |
|
seg_prefix='dataset_seen_val_1k/SegmentationImages', |
|
depth_prefix='dataset_seen_val_1k/DepthImages', |
|
test_mode=True, |
|
pipeline=[ |
|
dict(type='LoadImageFromFile'), |
|
dict(type='LoadRelationProposals'), |
|
dict( |
|
type='MultiScaleFlipAug', |
|
img_scale=(1000, 600), |
|
flip=False, |
|
transforms=[ |
|
dict(type='Resize', keep_ratio=True), |
|
dict( |
|
type='Normalize', |
|
mean=[123.675, 116.28, 103.53], |
|
std=[1.0, 1.0, 1.0], |
|
to_rgb=True), |
|
dict(type='Pad', size_divisor=32), |
|
dict(type='ImageToTensor', keys=['img']), |
|
dict( |
|
type='Collect', |
|
keys=['img', 'relation_proposals']) |
|
]) |
|
], |
|
class_agnostic=True, |
|
max_sample_num=1000), |
|
dict( |
|
type='VMRDAffordDataset', |
|
ann_file='data/vmrd/ImageSets/Main/test.txt', |
|
img_prefix='data/vmrd/', |
|
using_gt_proposals=True, |
|
pipeline=[ |
|
dict(type='LoadImageFromFile'), |
|
dict(type='LoadRelationProposals'), |
|
dict( |
|
type='MultiScaleFlipAug', |
|
img_scale=(1000, 600), |
|
flip=False, |
|
transforms=[ |
|
dict(type='Resize', keep_ratio=True), |
|
dict( |
|
type='Normalize', |
|
mean=[123.675, 116.28, 103.53], |
|
std=[1.0, 1.0, 1.0], |
|
to_rgb=True), |
|
dict(type='Pad', size_divisor=32), |
|
dict(type='ImageToTensor', keys=['img']), |
|
dict( |
|
type='Collect', |
|
keys=['img', 'relation_proposals']) |
|
]) |
|
], |
|
class_agnostic=True) |
|
], |
|
separate_eval=True, |
|
class_agnostic=True), |
|
test=dict( |
|
_delete_=True, |
|
type='ConcatDataset', |
|
datasets=[ |
|
dict( |
|
type='REGRADAffordDataset', |
|
data_root='data/regrad/', |
|
using_depth=False, |
|
using_gt_proposals=True, |
|
meta_info_file='dataset_seen_val_1k/meta_infos.json', |
|
ann_file='dataset_seen_val_1k/objects.json', |
|
img_prefix='dataset_seen_val_1k/RGBImages', |
|
seg_prefix='dataset_seen_val_1k/SegmentationImages', |
|
depth_prefix='dataset_seen_val_1k/DepthImages', |
|
test_mode=True, |
|
pipeline=[ |
|
dict(type='LoadImageFromFile'), |
|
dict(type='LoadRelationProposals'), |
|
dict( |
|
type='MultiScaleFlipAug', |
|
img_scale=(1000, 600), |
|
flip=False, |
|
transforms=[ |
|
dict(type='Resize', keep_ratio=True), |
|
dict( |
|
type='Normalize', |
|
mean=[123.675, 116.28, 103.53], |
|
std=[1.0, 1.0, 1.0], |
|
to_rgb=True), |
|
dict(type='Pad', size_divisor=32), |
|
dict(type='ImageToTensor', keys=['img']), |
|
dict( |
|
type='Collect', |
|
keys=['img', 'relation_proposals']) |
|
]) |
|
], |
|
class_agnostic=True, |
|
max_sample_num=1000), |
|
dict( |
|
type='VMRDAffordDataset', |
|
ann_file='data/vmrd/ImageSets/Main/test.txt', |
|
img_prefix='data/vmrd/', |
|
using_gt_proposals=True, |
|
pipeline=[ |
|
dict(type='LoadImageFromFile'), |
|
dict(type='LoadRelationProposals'), |
|
dict( |
|
type='MultiScaleFlipAug', |
|
img_scale=(1000, 600), |
|
flip=False, |
|
transforms=[ |
|
dict(type='Resize', keep_ratio=True), |
|
dict( |
|
type='Normalize', |
|
mean=[123.675, 116.28, 103.53], |
|
std=[1.0, 1.0, 1.0], |
|
to_rgb=True), |
|
dict(type='Pad', size_divisor=32), |
|
dict(type='ImageToTensor', keys=['img']), |
|
dict( |
|
type='Collect', |
|
keys=['img', 'relation_proposals']) |
|
]) |
|
], |
|
class_agnostic=True) |
|
], |
|
separate_eval=True, |
|
class_agnostic=True), |
|
samples_per_gpu=4, |
|
workers_per_gpu=2) |
|
evaluation = dict(interval=1, metric=['mAP', 'ImgAcc']) |
|
optimizer = dict(type='SGD', lr=0.005, momentum=0.9, weight_decay=0.0001) |
|
optimizer_config = dict(grad_clip=dict(max_norm=100, norm_type=2)) |
|
lr_config = dict( |
|
policy='step', |
|
warmup='linear', |
|
warmup_iters=4000, |
|
warmup_ratio=0.001, |
|
step=[12, 18]) |
|
runner = dict(type='EpochBasedRunner', max_epochs=20) |
|
checkpoint_config = dict(interval=1, max_keep_ckpts=5) |
|
log_config = dict(interval=50, hooks=[dict(type='TextLoggerHook')]) |
|
dist_params = dict(backend='nccl') |
|
log_level = 'INFO' |
|
load_from = None |
|
resume_from = None |
|
workflow = [('train', 1)] |
|
opencv_num_threads = 0 |
|
mp_start_method = 'fork' |
|
auto_scale_lr = dict(enable=False, base_batch_size=16) |
|
mmdet = None |
|
mmdet_root = '/data/home/hanbo/projects/cloud_services/service/vmrn/vmrn_models/mmdetection/mmdet' |
|
test_with_object_detector = False |
|
test_crop_config = (174, 79, 462, 372) |
|
kinect_img_pipeline = [ |
|
dict(type='LoadImageFromFile'), |
|
dict(type='LoadRelationProposals'), |
|
dict( |
|
type='FixedCrop', |
|
crop_type='absolute', |
|
top_left=(174, 79), |
|
bottom_right=(462, 372)), |
|
dict( |
|
type='MultiScaleFlipAug', |
|
img_scale=(1000, 600), |
|
flip=False, |
|
transforms=[ |
|
dict(type='Resize', keep_ratio=True), |
|
dict( |
|
type='Normalize', |
|
mean=[123.675, 116.28, 103.53], |
|
std=[1.0, 1.0, 1.0], |
|
to_rgb=True), |
|
dict(type='Pad', size_divisor=32), |
|
dict(type='ImageToTensor', keys=['img']), |
|
dict(type='Collect', keys=['img', 'relation_proposals']) |
|
]) |
|
] |
|
seen_val_dataset = dict( |
|
type='REGRADAffordDataset', |
|
data_root='data/regrad/', |
|
using_depth=False, |
|
using_gt_proposals=True, |
|
meta_info_file='dataset_seen_val_1k/meta_infos.json', |
|
ann_file='dataset_seen_val_1k/objects.json', |
|
img_prefix='dataset_seen_val_1k/RGBImages', |
|
seg_prefix='dataset_seen_val_1k/SegmentationImages', |
|
depth_prefix='dataset_seen_val_1k/DepthImages', |
|
test_mode=True, |
|
pipeline=[ |
|
dict(type='LoadImageFromFile'), |
|
dict(type='LoadRelationProposals'), |
|
dict( |
|
type='MultiScaleFlipAug', |
|
img_scale=(1000, 600), |
|
flip=False, |
|
transforms=[ |
|
dict(type='Resize', keep_ratio=True), |
|
dict( |
|
type='Normalize', |
|
mean=[123.675, 116.28, 103.53], |
|
std=[1.0, 1.0, 1.0], |
|
to_rgb=True), |
|
dict(type='Pad', size_divisor=32), |
|
dict(type='ImageToTensor', keys=['img']), |
|
dict(type='Collect', keys=['img', 'relation_proposals']) |
|
]) |
|
], |
|
class_agnostic=True, |
|
max_sample_num=1000) |
|
unseen_val_dataset = dict( |
|
type='REGRADAffordDataset', |
|
data_root='data/regrad/', |
|
using_depth=False, |
|
using_gt_proposals=True, |
|
meta_info_file='dataset_unseen_val_1k/meta_infos.json', |
|
ann_file='dataset_unseen_val_1k/objects.json', |
|
img_prefix='dataset_unseen_val_1k/RGBImages', |
|
seg_prefix='dataset_unseen_val_1k/SegmentationImages', |
|
depth_prefix='dataset_unseen_val_1k/DepthImages', |
|
test_mode=True, |
|
pipeline=[ |
|
dict(type='LoadImageFromFile'), |
|
dict(type='LoadRelationProposals'), |
|
dict( |
|
type='MultiScaleFlipAug', |
|
img_scale=(1000, 600), |
|
flip=False, |
|
transforms=[ |
|
dict(type='Resize', keep_ratio=True), |
|
dict( |
|
type='Normalize', |
|
mean=[123.675, 116.28, 103.53], |
|
std=[1.0, 1.0, 1.0], |
|
to_rgb=True), |
|
dict(type='Pad', size_divisor=32), |
|
dict(type='ImageToTensor', keys=['img']), |
|
dict(type='Collect', keys=['img', 'relation_proposals']) |
|
]) |
|
], |
|
class_agnostic=True, |
|
max_sample_num=1000) |
|
real_val_dataset = dict( |
|
type='REGRADAffordDataset', |
|
data_root='data/regrad/', |
|
using_depth=False, |
|
using_gt_proposals=True, |
|
meta_info_file='real/meta_infos.json', |
|
ann_file='real/objects.json', |
|
img_prefix='real/RGBImages', |
|
img_suffix='png', |
|
depth_prefix='real/DepthImages', |
|
test_mode=True, |
|
test_gt_bbox_offset=(174, 79), |
|
pipeline=[ |
|
dict(type='LoadImageFromFile'), |
|
dict(type='LoadRelationProposals'), |
|
dict( |
|
type='FixedCrop', |
|
crop_type='absolute', |
|
top_left=(174, 79), |
|
bottom_right=(462, 372)), |
|
dict( |
|
type='MultiScaleFlipAug', |
|
img_scale=(1000, 600), |
|
flip=False, |
|
transforms=[ |
|
dict(type='Resize', keep_ratio=True), |
|
dict( |
|
type='Normalize', |
|
mean=[123.675, 116.28, 103.53], |
|
std=[1.0, 1.0, 1.0], |
|
to_rgb=True), |
|
dict(type='Pad', size_divisor=32), |
|
dict(type='ImageToTensor', keys=['img']), |
|
dict(type='Collect', keys=['img', 'relation_proposals']) |
|
]) |
|
], |
|
class_agnostic=True) |
|
regrad_datatype = 'REGRADAffordDataset' |
|
regrad_root = 'data/regrad/' |
|
vmrd_datatype = 'VMRDAffordDataset' |
|
vmrd_root = 'data/vmrd/' |
|
vmrd_train = dict( |
|
type='VMRDAffordDataset', |
|
ann_file='data/vmrd/ImageSets/Main/trainval.txt', |
|
img_prefix='data/vmrd/', |
|
pipeline=[ |
|
dict(type='LoadImageFromFile', to_float32=True), |
|
dict( |
|
type='LoadAnnotationsCustom', |
|
keys=['gt_bboxes', 'gt_labels', 'gt_relchilds', 'gt_relleaves']), |
|
dict(type='RandomFlip', flip_ratio=0.5), |
|
dict(type='PhotoMetricDistortion'), |
|
dict(type='Expand', mean=[123.675, 116.28, 103.53]), |
|
dict(type='Resize', img_scale=(1000, 600), keep_ratio=True), |
|
dict( |
|
type='Normalize', |
|
mean=[123.675, 116.28, 103.53], |
|
std=[1.0, 1.0, 1.0], |
|
to_rgb=True), |
|
dict(type='Pad', size_divisor=32), |
|
dict( |
|
type='DefaultFormatBundleCustom', |
|
keys=[ |
|
'img', 'gt_bboxes', 'gt_labels', 'gt_relchilds', 'gt_relleaves' |
|
]), |
|
dict( |
|
type='Collect', |
|
keys=[ |
|
'img', 'gt_bboxes', 'gt_labels', 'gt_relchilds', 'gt_relleaves' |
|
]) |
|
], |
|
class_agnostic=True) |
|
regrad_train = dict( |
|
type='REGRADAffordDataset', |
|
data_root='data/regrad/', |
|
meta_info_file='dataset_train_5k/meta_infos.json', |
|
ann_file='dataset_train_5k/objects.json', |
|
img_prefix='dataset_train_5k/RGBImages', |
|
seg_prefix='dataset_train_5k/SegmentationImages', |
|
depth_prefix='dataset_train_5k/DepthImages', |
|
pipeline=[ |
|
dict(type='LoadImageFromFile', to_float32=True), |
|
dict( |
|
type='LoadAnnotationsCustom', |
|
keys=['gt_bboxes', 'gt_labels', 'gt_relchilds', 'gt_relleaves']), |
|
dict(type='RandomFlip', flip_ratio=0.5), |
|
dict(type='PhotoMetricDistortion'), |
|
dict( |
|
type='RandomCrop', |
|
crop_type='random_keep', |
|
allow_negative_crop=False), |
|
dict(type='Expand', mean=[123.675, 116.28, 103.53]), |
|
dict(type='Resize', img_scale=(1000, 600), keep_ratio=True), |
|
dict( |
|
type='Normalize', |
|
mean=[123.675, 116.28, 103.53], |
|
std=[1.0, 1.0, 1.0], |
|
to_rgb=True), |
|
dict(type='Pad', size_divisor=32), |
|
dict( |
|
type='DefaultFormatBundleCustom', |
|
keys=[ |
|
'img', 'gt_bboxes', 'gt_labels', 'gt_relchilds', 'gt_relleaves' |
|
]), |
|
dict( |
|
type='Collect', |
|
keys=[ |
|
'img', 'gt_bboxes', 'gt_labels', 'gt_relchilds', 'gt_relleaves' |
|
]) |
|
], |
|
min_pos_relation=1, |
|
class_agnostic=True) |
|
metagraspnet_sim_train = dict( |
|
type='MetaGraspNetAffordDataset', |
|
data_root='data/metagraspnet/sim/', |
|
meta_info_file='meta_infos_train.json', |
|
pipeline=[ |
|
dict(type='LoadImageFromFile', to_float32=True), |
|
dict( |
|
type='LoadAnnotationsCustom', |
|
keys=['gt_bboxes', 'gt_labels', 'gt_relchilds', 'gt_relleaves']), |
|
dict(type='RandomFlip', flip_ratio=0.5), |
|
dict(type='PhotoMetricDistortion'), |
|
dict( |
|
type='RandomCrop', |
|
crop_type='random_keep', |
|
allow_negative_crop=False), |
|
dict( |
|
type='Expand', mean=[123.675, 116.28, 103.53], ratio_range=(1, 2)), |
|
dict(type='Resize', img_scale=(1000, 600), keep_ratio=True), |
|
dict( |
|
type='Normalize', |
|
mean=[123.675, 116.28, 103.53], |
|
std=[1.0, 1.0, 1.0], |
|
to_rgb=True), |
|
dict(type='Pad', size_divisor=32), |
|
dict( |
|
type='DefaultFormatBundleCustom', |
|
keys=[ |
|
'img', 'gt_bboxes', 'gt_labels', 'gt_relchilds', 'gt_relleaves' |
|
]), |
|
dict( |
|
type='Collect', |
|
keys=[ |
|
'img', 'gt_bboxes', 'gt_labels', 'gt_relchilds', 'gt_relleaves' |
|
]) |
|
], |
|
min_pos_relation=1, |
|
class_agnostic=True) |
|
vgvrd_train_pipeline = [ |
|
dict(type='LoadImageFromFile', to_float32=True), |
|
dict( |
|
type='LoadAnnotationsCustom', |
|
keys=['gt_bboxes', 'gt_labels', 'gt_relchilds', 'gt_relleaves']), |
|
dict(type='RandomFlip', flip_ratio=0.5), |
|
dict(type='Resize', img_scale=(1000, 600), keep_ratio=True), |
|
dict( |
|
type='Normalize', |
|
mean=[123.675, 116.28, 103.53], |
|
std=[1.0, 1.0, 1.0], |
|
to_rgb=True), |
|
dict(type='Pad', size_divisor=32), |
|
dict( |
|
type='DefaultFormatBundleCustom', |
|
keys=['img', 'gt_bboxes', 'gt_labels', 'gt_relchilds', |
|
'gt_relleaves']), |
|
dict( |
|
type='Collect', |
|
keys=['img', 'gt_bboxes', 'gt_labels', 'gt_relchilds', 'gt_relleaves']) |
|
] |
|
vrd_train = dict( |
|
type='VRDAffordDataset', |
|
data_root='data/vrd/', |
|
ann_file='sg_dataset/sg_train_annotations.json', |
|
img_prefix='sg_dataset/sg_train_images/', |
|
pipeline=[ |
|
dict(type='LoadImageFromFile', to_float32=True), |
|
dict( |
|
type='LoadAnnotationsCustom', |
|
keys=['gt_bboxes', 'gt_labels', 'gt_relchilds', 'gt_relleaves']), |
|
dict(type='RandomFlip', flip_ratio=0.5), |
|
dict(type='Resize', img_scale=(1000, 600), keep_ratio=True), |
|
dict( |
|
type='Normalize', |
|
mean=[123.675, 116.28, 103.53], |
|
std=[1.0, 1.0, 1.0], |
|
to_rgb=True), |
|
dict(type='Pad', size_divisor=32), |
|
dict( |
|
type='DefaultFormatBundleCustom', |
|
keys=[ |
|
'img', 'gt_bboxes', 'gt_labels', 'gt_relchilds', 'gt_relleaves' |
|
]), |
|
dict( |
|
type='Collect', |
|
keys=[ |
|
'img', 'gt_bboxes', 'gt_labels', 'gt_relchilds', 'gt_relleaves' |
|
]) |
|
], |
|
class_agnostic=True) |
|
vg_train = dict( |
|
type='VGAffordDataset', |
|
data_root='data/vg/downloads', |
|
ann_file='relationships.json', |
|
img_prefix='', |
|
pipeline=[ |
|
dict(type='LoadImageFromFile', to_float32=True), |
|
dict( |
|
type='LoadAnnotationsCustom', |
|
keys=['gt_bboxes', 'gt_labels', 'gt_relchilds', 'gt_relleaves']), |
|
dict(type='RandomFlip', flip_ratio=0.5), |
|
dict(type='Resize', img_scale=(1000, 600), keep_ratio=True), |
|
dict( |
|
type='Normalize', |
|
mean=[123.675, 116.28, 103.53], |
|
std=[1.0, 1.0, 1.0], |
|
to_rgb=True), |
|
dict(type='Pad', size_divisor=32), |
|
dict( |
|
type='DefaultFormatBundleCustom', |
|
keys=[ |
|
'img', 'gt_bboxes', 'gt_labels', 'gt_relchilds', 'gt_relleaves' |
|
]), |
|
dict( |
|
type='Collect', |
|
keys=[ |
|
'img', 'gt_bboxes', 'gt_labels', 'gt_relchilds', 'gt_relleaves' |
|
]) |
|
], |
|
class_agnostic=True) |
|
real_test_pipeline = [ |
|
dict(type='LoadImageFromFile'), |
|
dict(type='LoadRelationProposals'), |
|
dict( |
|
type='FixedCrop', |
|
crop_type='absolute', |
|
top_left=(174, 79), |
|
bottom_right=(462, 372)), |
|
dict( |
|
type='MultiScaleFlipAug', |
|
img_scale=(1000, 600), |
|
flip=False, |
|
transforms=[ |
|
dict(type='Resize', keep_ratio=True), |
|
dict( |
|
type='Normalize', |
|
mean=[123.675, 116.28, 103.53], |
|
std=[1.0, 1.0, 1.0], |
|
to_rgb=True), |
|
dict(type='Pad', size_divisor=32), |
|
dict(type='ImageToTensor', keys=['img']), |
|
dict(type='Collect', keys=['img', 'relation_proposals']) |
|
]) |
|
] |
|
regrad_seen_val_dataset = dict( |
|
type='REGRADAffordDataset', |
|
data_root='data/regrad/', |
|
using_depth=False, |
|
using_gt_proposals=True, |
|
meta_info_file='dataset_seen_val_1k/meta_infos.json', |
|
ann_file='dataset_seen_val_1k/objects.json', |
|
img_prefix='dataset_seen_val_1k/RGBImages', |
|
seg_prefix='dataset_seen_val_1k/SegmentationImages', |
|
depth_prefix='dataset_seen_val_1k/DepthImages', |
|
test_mode=True, |
|
pipeline=[ |
|
dict(type='LoadImageFromFile'), |
|
dict(type='LoadRelationProposals'), |
|
dict( |
|
type='MultiScaleFlipAug', |
|
img_scale=(1000, 600), |
|
flip=False, |
|
transforms=[ |
|
dict(type='Resize', keep_ratio=True), |
|
dict( |
|
type='Normalize', |
|
mean=[123.675, 116.28, 103.53], |
|
std=[1.0, 1.0, 1.0], |
|
to_rgb=True), |
|
dict(type='Pad', size_divisor=32), |
|
dict(type='ImageToTensor', keys=['img']), |
|
dict(type='Collect', keys=['img', 'relation_proposals']) |
|
]) |
|
], |
|
class_agnostic=True, |
|
max_sample_num=1000) |
|
regrad_unseen_val_dataset = dict( |
|
type='REGRADAffordDataset', |
|
data_root='data/regrad/', |
|
using_depth=False, |
|
using_gt_proposals=True, |
|
meta_info_file='dataset_unseen_val_1k/meta_infos.json', |
|
ann_file='dataset_unseen_val_1k/objects.json', |
|
img_prefix='dataset_unseen_val_1k/RGBImages', |
|
seg_prefix='dataset_unseen_val_1k/SegmentationImages', |
|
depth_prefix='dataset_unseen_val_1k/DepthImages', |
|
test_mode=True, |
|
pipeline=[ |
|
dict(type='LoadImageFromFile'), |
|
dict(type='LoadRelationProposals'), |
|
dict( |
|
type='MultiScaleFlipAug', |
|
img_scale=(1000, 600), |
|
flip=False, |
|
transforms=[ |
|
dict(type='Resize', keep_ratio=True), |
|
dict( |
|
type='Normalize', |
|
mean=[123.675, 116.28, 103.53], |
|
std=[1.0, 1.0, 1.0], |
|
to_rgb=True), |
|
dict(type='Pad', size_divisor=32), |
|
dict(type='ImageToTensor', keys=['img']), |
|
dict(type='Collect', keys=['img', 'relation_proposals']) |
|
]) |
|
], |
|
class_agnostic=True, |
|
max_sample_num=1000) |
|
regrad_real_val_dataset = dict( |
|
type='REGRADAffordDataset', |
|
data_root='data/regrad/', |
|
using_depth=False, |
|
using_gt_proposals=True, |
|
meta_info_file='real/meta_infos.json', |
|
ann_file='real/objects.json', |
|
img_prefix='real/RGBImages', |
|
img_suffix='png', |
|
depth_prefix='real/DepthImages', |
|
test_mode=True, |
|
test_gt_bbox_offset=(174, 79), |
|
pipeline=[ |
|
dict(type='LoadImageFromFile'), |
|
dict(type='LoadRelationProposals'), |
|
dict( |
|
type='FixedCrop', |
|
crop_type='absolute', |
|
top_left=(174, 79), |
|
bottom_right=(462, 372)), |
|
dict( |
|
type='MultiScaleFlipAug', |
|
img_scale=(1000, 600), |
|
flip=False, |
|
transforms=[ |
|
dict(type='Resize', keep_ratio=True), |
|
dict( |
|
type='Normalize', |
|
mean=[123.675, 116.28, 103.53], |
|
std=[1.0, 1.0, 1.0], |
|
to_rgb=True), |
|
dict(type='Pad', size_divisor=32), |
|
dict(type='ImageToTensor', keys=['img']), |
|
dict(type='Collect', keys=['img', 'relation_proposals']) |
|
]) |
|
], |
|
class_agnostic=True) |
|
vmrd_val_dataset = dict( |
|
type='VMRDAffordDataset', |
|
ann_file='data/vmrd/ImageSets/Main/test.txt', |
|
img_prefix='data/vmrd/', |
|
using_gt_proposals=True, |
|
pipeline=[ |
|
dict(type='LoadImageFromFile'), |
|
dict(type='LoadRelationProposals'), |
|
dict( |
|
type='MultiScaleFlipAug', |
|
img_scale=(1000, 600), |
|
flip=False, |
|
transforms=[ |
|
dict(type='Resize', keep_ratio=True), |
|
dict( |
|
type='Normalize', |
|
mean=[123.675, 116.28, 103.53], |
|
std=[1.0, 1.0, 1.0], |
|
to_rgb=True), |
|
dict(type='Pad', size_divisor=32), |
|
dict(type='ImageToTensor', keys=['img']), |
|
dict(type='Collect', keys=['img', 'relation_proposals']) |
|
]) |
|
], |
|
class_agnostic=True) |
|
train_sampler = dict( |
|
type='DistributedWeightedSampler', |
|
weights=[0.1, 0.1, 0.05, 0.05, 0.7], |
|
sample_per_epoch=150000, |
|
shuffle=True) |
|
work_dir = './work_dirs/relation_afford_r101_caffe_c4_1x_regrad_vmrd_metagraspnet_vrd_vg_class_agnostic' |
|
gpu_ids = range(0, 8) |
|
|
|
|