--- license: mit pipeline_tag: image-to-text library_name: transformers --- # Q-SiT: Image Quality Scoring and Interpreting with Large Language Models Q-SiT is a model for image quality scoring and interpretation. It uses a Large Language Model to perform both tasks simultaneously, recognizing the inherent connection between perception and decision-making in the human visual system. Unlike previous approaches which treat scoring and interpreting as separate tasks, Q-SiT provides a unified framework. Project page: https://github.com/Q-Future/Q-SiT ## Quicker Start with Hugging Face AutoModel No need to install this GitHub repo. Ensure that you use the Transformers package version 4.45.0 (`pip install transformers==4.45.0`). ### Image Quality Interpreting Chat ```python import requests from PIL import Image import torch from transformers import AutoProcessor, LlavaOnevisionForConditionalGeneration model_id = "zhangzicheng/q-sit-mini" # if you want to use primary version, switch to q-sit # model_id = "zhangzicheng/q-sit" model = LlavaOnevisionForConditionalGeneration.from_pretrained( model_id, torch_dtype=torch.float16, low_cpu_mem_usage=True, ).to(0) processor = AutoProcessor.from_pretrained(model_id) conversation = [ { "role": "user", "content": [ {"type": "text", "text": "How is the clarity of the human in this image?"}, {"type": "image"}, ], }, ] prompt = processor.apply_chat_template(conversation, add_generation_prompt=True) raw_image = Image.open(requests.get("https://github.com/Q-Future/Q-SiT/blob/main/44009500.jpg?raw=true",stream=True).raw) inputs = processor(images=raw_image, text=prompt, return_tensors='pt').to(0, torch.float16) output = model.generate(**inputs, max_new_tokens=200, do_sample=False) print(processor.decode(output[0][2:], skip_special_tokens=True).split("assistant")[-1]) # very low ``` ### Image Quality Scoring ```python import torch import requests from PIL import Image from transformers import AutoProcessor, LlavaOnevisionForConditionalGeneration, AutoTokenizer import numpy as np def wa5(logits): logprobs = np.array([logits["Excellent"], logits["Good"], logits["Fair"], logits["Poor"], logits["Bad"]]) probs = np.exp(logprobs) / np.sum(np.exp(logprobs)) return np.inner(probs, np.array([1, 0.75, 0.5, 0.25, 0])) model_id = "zhangzicheng/q-sit-mini" model = LlavaOnevisionForConditionalGeneration.from_pretrained( model_id, torch_dtype=torch.float16, low_cpu_mem_usage=True, ).to(0) processor = AutoProcessor.from_pretrained(model_id) tokenizer = AutoTokenizer.from_pretrained(model_id) # Define rating tokens toks = ["Excellent", "Good", "Fair", "Poor", "Bad"] ids_ = [id_[0] for id_ in tokenizer(toks)["input_ids"]] print("Rating token IDs:", ids_) conversation = [ { "role": "user", "content": [ {"type": "text", "text": "Assume you are an image quality evaluator. Your rating should be chosen from the following five categories: Excellent, Good, Fair, Poor, and Bad (from high to low). How would you rate the quality of this image?"}, {"type": "image"}, ], }, ] prompt = processor.apply_chat_template(conversation, add_generation_prompt=True) # Load image raw_image = Image.open(requests.get("https://github.com/Q-Future/Q-SiT/blob/main/44009500.jpg?raw=true",stream=True).raw) inputs = processor(images=raw_image, text=prompt, return_tensors='pt').to(0, torch.float16) # Manually append the assistant prefix "The quality of this image is " prefix_text = "The quality of this image is " prefix_ids = tokenizer(prefix_text, return_tensors="pt")["input_ids"].to(0) inputs["input_ids"] = torch.cat([inputs["input_ids"], prefix_ids], dim=-1) inputs["attention_mask"] = torch.ones_like(inputs["input_ids"]) # Update attention mask # Generate exactly one token (the rating) output = model.generate( **inputs, max_new_tokens=1, # Generate only the rating token output_logits=True, return_dict_in_generate=True, ) # Extract logits for the generated rating token last_logits = output.logits[-1][0] # Shape: [vocab_size] logits_dict = {tok: last_logits[id_].item() for tok, id_ in zip(toks, ids_)} weighted_score = wa5(logits_dict) print("Weighted average score:", weighted_score) # Weighted average score: 0.045549712192942585 range from 0-1 # if you want range from 0-5, multiply 5 ``` For dataset evaluation scripts, please refer to [this directory](https://github.com/Q-Future/Q-SiT/tree/main/eval_scripts). For training information, see the [Training Q-SiT](https://github.com/Q-Future/Q-SiT#training-q-sit) section of the GitHub repository. ## Citation If you find our work useful, please cite our paper as: ``` @misc{zhang2025teachinglmmsimagequality, title={Teaching LMMs for Image Quality Scoring and Interpreting}, author={Zicheng Zhang and Haoning Wu and Ziheng Jia and Weisi Lin and Guangtao Zhai}, year={2025}, eprint={2503.09197}, archivePrefix={arXiv}, primaryClass={cs.CV}, url={https://arxiv.org/abs/2503.09197}, } ```