zestyoreo commited on
Commit
5fd447d
·
1 Parent(s): 1bda1e9

Upload PPO LunarLander-v2 trained agent

Browse files
README.md ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - LunarLander-v2
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: PPO
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: LunarLander-v2
16
+ type: LunarLander-v2
17
+ metrics:
18
+ - type: mean_reward
19
+ value: 247.23 +/- 17.25
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # **PPO** Agent playing **LunarLander-v2**
25
+ This is a trained model of a **PPO** agent playing **LunarLander-v2**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
27
+
28
+ ## Usage (with Stable-baselines3)
29
+ TODO: Add your code
30
+
31
+
32
+ ```python
33
+ from stable_baselines3 import ...
34
+ from huggingface_sb3 import load_from_hub
35
+
36
+ ...
37
+ ```
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f7cd8dd73a0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f7cd8dd7430>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f7cd8dd74c0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f7cd8dd7550>", "_build": "<function ActorCriticPolicy._build at 0x7f7cd8dd75e0>", "forward": "<function ActorCriticPolicy.forward at 0x7f7cd8dd7670>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f7cd8dd7700>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f7cd8dd7790>", "_predict": "<function ActorCriticPolicy._predict at 0x7f7cd8dd7820>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f7cd8dd78b0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f7cd8dd7940>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f7cd8dd79d0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f7cd8dd2630>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1677597991964621808, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAM1sTr3DzUy6af6Pua86C7TWOGy7lt+oOAAAgD8AAIA/Zq7Eu3suh7r7PVo66juzNRrOCLroNH65AACAPwAAgD9zF5o9KbR9ul7VdDomW282Eiv9OlsxjLkAAIA/AACAP+ZmMr4iN6I/3HgYv/Wg377Yrla+kxmzvQAAAAAAAAAAZmUUPgVFsLvG/hU7+jGuuKpXFb0RoDW6AACAPwAAgD8zrf88SEuluiXMBTgLiu4ySyE3Oh7jGbcAAIA/AACAP7pZBL6s+w0/yr4VPUQ9or6FZqm9HRmsPAAAAAAAAAAA5qUwPVzLNLrXKYS4GaogtALlQTvyYpg3AACAPwAAgD+zF8U9FOyZuqK8kzv2tWI4LJvwucpCg7gAAAAAAACAPxqOQj0pnG66wkSJNw0RdDKa5wA7zdygtgAAgD8AAIA/ZnYHOzaIF7wlNYm80l6DPLLcZz3izPo9AACAPwAAgD/Ao9w9XA8GuNKfeLcRMQeyZgLmOq9rmDYAAAAAAACAPzNgD71PuXQ9ZvopPsSzfb4KM189g29jvAAAAAAAAAAAszdLvfOKWD9uPxi9hJWlvpZp1byDqic9AAAAAAAAAACDuWy+EglKP7roI76C6bu+sgMqvuhAhT0AAAAAAAAAAM3sH7r7c7M/Uy99vWeBy755Gjs6wGZlPAAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVfRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBf2FHrHscECUhpRSlIwBbJRNlQGMAXSUR0CTJp+i8FpxdX2UKGgGaAloD0MI8Wd4s0Y6cECUhpRSlGgVTawBaBZHQJMoJTAFgUl1fZQoaAZoCWgPQwgzMV2I1QhuQJSGlFKUaBVNagFoFkdAkyqHZXdTHnV9lChoBmgJaA9DCKc7Tzyns3FAlIaUUpRoFU2TA2gWR0CTLNl/H5rQdX2UKGgGaAloD0MI4J18eiwvckCUhpRSlGgVTZwCaBZHQJMwMlhPTG51fZQoaAZoCWgPQwg9uhEW1RByQJSGlFKUaBVNygFoFkdAkzGrsv7FbXV9lChoBmgJaA9DCLw7MlabVWNAlIaUUpRoFU3oA2gWR0CTNPlj3EhrdX2UKGgGaAloD0MIQIo6cw9NPUCUhpRSlGgVS/doFkdAkzUUKRdQf3V9lChoBmgJaA9DCKslHeUgbHBAlIaUUpRoFU0SAWgWR0CTNRT8YQ8PdX2UKGgGaAloD0MIDKzj+CEfZ0CUhpRSlGgVTegDaBZHQJM1iHFglWx1fZQoaAZoCWgPQwjsLlBSYApwQJSGlFKUaBVN7AFoFkdAkzat6X0GvHV9lChoBmgJaA9DCJrS+lsCL29AlIaUUpRoFU0TAmgWR0CTNrUVBUrDdX2UKGgGaAloD0MI0uKMYU7NXkCUhpRSlGgVTegDaBZHQJM6YZZSvTx1fZQoaAZoCWgPQwhYkGYsmjpjQJSGlFKUaBVN6ANoFkdAkzwJi3G4qnV9lChoBmgJaA9DCCuHFtnOK2ZAlIaUUpRoFU3oA2gWR0CTWXKcd5prdX2UKGgGaAloD0MILQWk/Y+8cECUhpRSlGgVTSABaBZHQJNZ5yp71I11fZQoaAZoCWgPQwhEFJM3QB5wQJSGlFKUaBVNowFoFkdAk2FrNKRMe3V9lChoBmgJaA9DCK/NxkoMV3FAlIaUUpRoFU3hAWgWR0CTZNBQemvXdX2UKGgGaAloD0MIO1YpPZM9cECUhpRSlGgVTSgCaBZHQJNlSLbYbsF1fZQoaAZoCWgPQwjS/ZyC/MBhQJSGlFKUaBVN6ANoFkdAk2Zna8Hv+nV9lChoBmgJaA9DCMv1tpkKm3JAlIaUUpRoFU3aAWgWR0CTZpL9deIEdX2UKGgGaAloD0MI5usy/KexckCUhpRSlGgVTXQDaBZHQJNorGMn7YV1fZQoaAZoCWgPQwgF3smnR9ByQJSGlFKUaBVNZQFoFkdAk21fUz9CNXV9lChoBmgJaA9DCEJfevtzZGZAlIaUUpRoFU3oA2gWR0CTbyMrVe8gdX2UKGgGaAloD0MI6wJeZlg4ckCUhpRSlGgVTZICaBZHQJNwFKFqSHN1fZQoaAZoCWgPQwhEFJM3QNJkQJSGlFKUaBVN6ANoFkdAk3UfJq7AcnV9lChoBmgJaA9DCNdnzvoUcHJAlIaUUpRoFU05A2gWR0CTdrAB1cMWdX2UKGgGaAloD0MIjNtoAG/pZkCUhpRSlGgVTegDaBZHQJN3fBXS0Bx1fZQoaAZoCWgPQwgK2uTwyaRxQJSGlFKUaBVNRAJoFkdAk3l15OafBnV9lChoBmgJaA9DCPloccYwL3JAlIaUUpRoFU3CAmgWR0CTeaovSMLndX2UKGgGaAloD0MIPrK5al66cECUhpRSlGgVTdsBaBZHQJN6NiYsunN1fZQoaAZoCWgPQwhtyhXeZRpgQJSGlFKUaBVN6ANoFkdAk3rXJDE3sHV9lChoBmgJaA9DCI3ROqoa+WpAlIaUUpRoFU0GA2gWR0CTeu8scyWSdX2UKGgGaAloD0MIjuiedQ0Jb0CUhpRSlGgVTcUBaBZHQJN9E+V1Oj91fZQoaAZoCWgPQwh1P6cgP2JvQJSGlFKUaBVNKAFoFkdAk32bT2FnI3V9lChoBmgJaA9DCFNaf0vAQnJAlIaUUpRoFU0eAmgWR0CTgOp7CzkZdX2UKGgGaAloD0MIG/Z7Yh3BcECUhpRSlGgVTbcBaBZHQJOCeuPmxMZ1fZQoaAZoCWgPQwifHtsyIL1wQJSGlFKUaBVNVwFoFkdAk4iLjghr33V9lChoBmgJaA9DCFzK+WJv33BAlIaUUpRoFU1BAWgWR0CTooIF/x2CdX2UKGgGaAloD0MIjJ5b6AoxcUCUhpRSlGgVTfUBaBZHQJOrRsVLzwt1fZQoaAZoCWgPQwiLh/ccGLpwQJSGlFKUaBVNzQJoFkdAk601L39JjHV9lChoBmgJaA9DCAIs8usH63FAlIaUUpRoFU0tAmgWR0CTrxhqCYkWdX2UKGgGaAloD0MIxf8dUaFqcUCUhpRSlGgVTZABaBZHQJOvTrRjSXt1fZQoaAZoCWgPQwiKd4AnbblxQJSGlFKUaBVNhQNoFkdAk69/P9kz43V9lChoBmgJaA9DCNYdi23Som1AlIaUUpRoFU0yAmgWR0CTsBX0XgtOdX2UKGgGaAloD0MIc0urIXFEX0CUhpRSlGgVTegDaBZHQJOwahf0Eox1fZQoaAZoCWgPQwj6mA8I9PViQJSGlFKUaBVN6ANoFkdAk7DTdgv12HV9lChoBmgJaA9DCJMa2gAs+HBAlIaUUpRoFU1lAmgWR0CTtQC1Z1V6dX2UKGgGaAloD0MI0lEOZpOQcUCUhpRSlGgVTU0BaBZHQJO+jurp7kZ1fZQoaAZoCWgPQwiZYaOsX0hiQJSGlFKUaBVN6ANoFkdAk7778ejmCHV9lChoBmgJaA9DCGB2Tx4WDjpAlIaUUpRoFUvqaBZHQJPA4+0PYnR1fZQoaAZoCWgPQwh/Tdaoh7xiQJSGlFKUaBVN6ANoFkdAk8EIeYD1XnV9lChoBmgJaA9DCNKNsKhImXBAlIaUUpRoFU2aAWgWR0CTw3MOPNmldX2UKGgGaAloD0MIcjRHVn6UXUCUhpRSlGgVTegDaBZHQJPEitA9mpV1fZQoaAZoCWgPQwizQSYZOWxvQJSGlFKUaBVNPwJoFkdAk8nYw22oenV9lChoBmgJaA9DCI+NQLwuYGNAlIaUUpRoFU3oA2gWR0CTyiiJO32FdX2UKGgGaAloD0MIURVT6ae6bECUhpRSlGgVTZ4DaBZHQJPNzRNRFZx1fZQoaAZoCWgPQwiPbK6aJxRwQJSGlFKUaBVNRQJoFkdAk9BrmMfignV9lChoBmgJaA9DCJUtknZj13FAlIaUUpRoFU0mAWgWR0CT0tIJJGvwdX2UKGgGaAloD0MIs0EmGbm+cECUhpRSlGgVTWABaBZHQJPVZ4Uvf0p1fZQoaAZoCWgPQwjRr62ffvViQJSGlFKUaBVN6ANoFkdAk9dnXumaY3V9lChoBmgJaA9DCIL+Qo+Y7WNAlIaUUpRoFU3oA2gWR0CT2Z1ZTyavdX2UKGgGaAloD0MIwFq1a8JwckCUhpRSlGgVTfsCaBZHQJPtWFM7EHd1fZQoaAZoCWgPQwjspSkCXApxQJSGlFKUaBVNngFoFkdAk+6Enb7CSHV9lChoBmgJaA9DCAA3ixcL8XBAlIaUUpRoFU3PAWgWR0CT7wZ+x4Y8dX2UKGgGaAloD0MI2LlpMw4Cc0CUhpRSlGgVTTABaBZHQJPwbIbOu7p1fZQoaAZoCWgPQwiJmujzkalwQJSGlFKUaBVNfwFoFkdAk/FkvCdjG3V9lChoBmgJaA9DCBiyutXz8G1AlIaUUpRoFU2yAWgWR0CT88RBeHBUdX2UKGgGaAloD0MIIqZEEv33cUCUhpRSlGgVTa4DaBZHQJPz8+KTB691fZQoaAZoCWgPQwi1pQ7yup9xQJSGlFKUaBVNRAJoFkdAk/QXkxREW3V9lChoBmgJaA9DCCsU6X5O+GNAlIaUUpRoFU3oA2gWR0CT9HXXiBGydX2UKGgGaAloD0MIwy6KHvgLbECUhpRSlGgVTTUBaBZHQJP1s7Njbzt1fZQoaAZoCWgPQwidvp6v2SZlQJSGlFKUaBVN6ANoFkdAk/bChJyyU3V9lChoBmgJaA9DCDav6qzWPHBAlIaUUpRoFU2JAmgWR0CT+Kl9Sde6dX2UKGgGaAloD0MI4c/wZo0SckCUhpRSlGgVTboBaBZHQJP44tBfKIV1fZQoaAZoCWgPQwjKGB9mLxFEQJSGlFKUaBVL12gWR0CT+bkHUtqYdX2UKGgGaAloD0MI+fNtwZLRckCUhpRSlGgVTaQBaBZHQJP7wxesxPB1fZQoaAZoCWgPQwi/uFSlLT1uQJSGlFKUaBVNOAFoFkdAk/1+EIw/PnV9lChoBmgJaA9DCPmDgedebXJAlIaUUpRoFU10AmgWR0CUAMTGHYYjdX2UKGgGaAloD0MI8NqlDYfka0CUhpRSlGgVTSMBaBZHQJQBsMAmzB11fZQoaAZoCWgPQwjM7V7uk8tuQJSGlFKUaBVNqAFoFkdAlAHd43WFvnV9lChoBmgJaA9DCAk4hCo1iHJAlIaUUpRoFU0vAWgWR0CUAvK77Kq5dX2UKGgGaAloD0MI4ZUkzzXOcUCUhpRSlGgVTYYBaBZHQJQH1fPX05F1fZQoaAZoCWgPQwgwYp8AivdvQJSGlFKUaBVNmAFoFkdAlAjMqvvBrXV9lChoBmgJaA9DCJ7Q609isnBAlIaUUpRoFU1DAmgWR0CUCP9WIXTFdX2UKGgGaAloD0MIH9jxX6DGbUCUhpRSlGgVTTkCaBZHQJQJtlmOEM91fZQoaAZoCWgPQwhNMnIWdsFtQJSGlFKUaBVNiwFoFkdAlAsnndO6/nV9lChoBmgJaA9DCMMrSZ5rBm9AlIaUUpRoFU2eAWgWR0CUDgwrDqGDdX2UKGgGaAloD0MI7pdPVgwhRkCUhpRSlGgVS99oFkdAlA6+lj3Eh3V9lChoBmgJaA9DCL0Yyom2enJAlIaUUpRoFU2WAWgWR0CUEFOlfqoqdX2UKGgGaAloD0MIStBf6BEtbkCUhpRSlGgVTW4BaBZHQJQRmULUkOZ1fZQoaAZoCWgPQwiGIXL6+gxxQJSGlFKUaBVNUgFoFkdAlBGXCsOoYXV9lChoBmgJaA9DCO4+x0eL9nBAlIaUUpRoFU2dAWgWR0CUEZfDDTBqdX2UKGgGaAloD0MIxO3QsFj8cECUhpRSlGgVTVEBaBZHQJQUN69kBjp1fZQoaAZoCWgPQwi+TBQhtalwQJSGlFKUaBVNXQFoFkdAlBST/VAiV3V9lChoBmgJaA9DCMUAiSZQAnBAlIaUUpRoFU1fAWgWR0CUGdSeAd4ndX2UKGgGaAloD0MInrXbLvR2cUCUhpRSlGgVTR8BaBZHQJQbr9Nvfj11fZQoaAZoCWgPQwgziA/seLRtQJSGlFKUaBVNiwFoFkdAlBxQlByCF3V9lChoBmgJaA9DCNnPYikSV3JAlIaUUpRoFU2JAWgWR0CUHf7wKBuodX2UKGgGaAloD0MI290DdF+UcUCUhpRSlGgVTScBaBZHQJQfQvlEJBx1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 248, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.29 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.8.10", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.1+cu116", "GPU Enabled": "True", "Numpy": "1.22.4", "Gym": "0.21.0"}}
ppo-LunarLander-v2.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:7e81af66c414f6a50fbe1087d44e447304210fc2c4159d976bcebbbe5d6a647a
3
+ size 147420
ppo-LunarLander-v2/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 1.7.0
ppo-LunarLander-v2/data ADDED
@@ -0,0 +1,95 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7f7cd8dd73a0>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f7cd8dd7430>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f7cd8dd74c0>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f7cd8dd7550>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7f7cd8dd75e0>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7f7cd8dd7670>",
13
+ "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f7cd8dd7700>",
14
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f7cd8dd7790>",
15
+ "_predict": "<function ActorCriticPolicy._predict at 0x7f7cd8dd7820>",
16
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f7cd8dd78b0>",
17
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f7cd8dd7940>",
18
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f7cd8dd79d0>",
19
+ "__abstractmethods__": "frozenset()",
20
+ "_abc_impl": "<_abc_data object at 0x7f7cd8dd2630>"
21
+ },
22
+ "verbose": 1,
23
+ "policy_kwargs": {},
24
+ "observation_space": {
25
+ ":type:": "<class 'gym.spaces.box.Box'>",
26
+ ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
27
+ "dtype": "float32",
28
+ "_shape": [
29
+ 8
30
+ ],
31
+ "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]",
32
+ "high": "[inf inf inf inf inf inf inf inf]",
33
+ "bounded_below": "[False False False False False False False False]",
34
+ "bounded_above": "[False False False False False False False False]",
35
+ "_np_random": null
36
+ },
37
+ "action_space": {
38
+ ":type:": "<class 'gym.spaces.discrete.Discrete'>",
39
+ ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu",
40
+ "n": 4,
41
+ "_shape": [],
42
+ "dtype": "int64",
43
+ "_np_random": null
44
+ },
45
+ "n_envs": 16,
46
+ "num_timesteps": 1015808,
47
+ "_total_timesteps": 1000000,
48
+ "_num_timesteps_at_start": 0,
49
+ "seed": null,
50
+ "action_noise": null,
51
+ "start_time": 1677597991964621808,
52
+ "learning_rate": 0.0003,
53
+ "tensorboard_log": null,
54
+ "lr_schedule": {
55
+ ":type:": "<class 'function'>",
56
+ ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
57
+ },
58
+ "_last_obs": {
59
+ ":type:": "<class 'numpy.ndarray'>",
60
+ ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAM1sTr3DzUy6af6Pua86C7TWOGy7lt+oOAAAgD8AAIA/Zq7Eu3suh7r7PVo66juzNRrOCLroNH65AACAPwAAgD9zF5o9KbR9ul7VdDomW282Eiv9OlsxjLkAAIA/AACAP+ZmMr4iN6I/3HgYv/Wg377Yrla+kxmzvQAAAAAAAAAAZmUUPgVFsLvG/hU7+jGuuKpXFb0RoDW6AACAPwAAgD8zrf88SEuluiXMBTgLiu4ySyE3Oh7jGbcAAIA/AACAP7pZBL6s+w0/yr4VPUQ9or6FZqm9HRmsPAAAAAAAAAAA5qUwPVzLNLrXKYS4GaogtALlQTvyYpg3AACAPwAAgD+zF8U9FOyZuqK8kzv2tWI4LJvwucpCg7gAAAAAAACAPxqOQj0pnG66wkSJNw0RdDKa5wA7zdygtgAAgD8AAIA/ZnYHOzaIF7wlNYm80l6DPLLcZz3izPo9AACAPwAAgD/Ao9w9XA8GuNKfeLcRMQeyZgLmOq9rmDYAAAAAAACAPzNgD71PuXQ9ZvopPsSzfb4KM189g29jvAAAAAAAAAAAszdLvfOKWD9uPxi9hJWlvpZp1byDqic9AAAAAAAAAACDuWy+EglKP7roI76C6bu+sgMqvuhAhT0AAAAAAAAAAM3sH7r7c7M/Uy99vWeBy755Gjs6wGZlPAAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
61
+ },
62
+ "_last_episode_starts": {
63
+ ":type:": "<class 'numpy.ndarray'>",
64
+ ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
65
+ },
66
+ "_last_original_obs": null,
67
+ "_episode_num": 0,
68
+ "use_sde": false,
69
+ "sde_sample_freq": -1,
70
+ "_current_progress_remaining": -0.015808000000000044,
71
+ "ep_info_buffer": {
72
+ ":type:": "<class 'collections.deque'>",
73
+ ":serialized:": "gAWVfRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBf2FHrHscECUhpRSlIwBbJRNlQGMAXSUR0CTJp+i8FpxdX2UKGgGaAloD0MI8Wd4s0Y6cECUhpRSlGgVTawBaBZHQJMoJTAFgUl1fZQoaAZoCWgPQwgzMV2I1QhuQJSGlFKUaBVNagFoFkdAkyqHZXdTHnV9lChoBmgJaA9DCKc7Tzyns3FAlIaUUpRoFU2TA2gWR0CTLNl/H5rQdX2UKGgGaAloD0MI4J18eiwvckCUhpRSlGgVTZwCaBZHQJMwMlhPTG51fZQoaAZoCWgPQwg9uhEW1RByQJSGlFKUaBVNygFoFkdAkzGrsv7FbXV9lChoBmgJaA9DCLw7MlabVWNAlIaUUpRoFU3oA2gWR0CTNPlj3EhrdX2UKGgGaAloD0MIQIo6cw9NPUCUhpRSlGgVS/doFkdAkzUUKRdQf3V9lChoBmgJaA9DCKslHeUgbHBAlIaUUpRoFU0SAWgWR0CTNRT8YQ8PdX2UKGgGaAloD0MIDKzj+CEfZ0CUhpRSlGgVTegDaBZHQJM1iHFglWx1fZQoaAZoCWgPQwjsLlBSYApwQJSGlFKUaBVN7AFoFkdAkzat6X0GvHV9lChoBmgJaA9DCJrS+lsCL29AlIaUUpRoFU0TAmgWR0CTNrUVBUrDdX2UKGgGaAloD0MI0uKMYU7NXkCUhpRSlGgVTegDaBZHQJM6YZZSvTx1fZQoaAZoCWgPQwhYkGYsmjpjQJSGlFKUaBVN6ANoFkdAkzwJi3G4qnV9lChoBmgJaA9DCCuHFtnOK2ZAlIaUUpRoFU3oA2gWR0CTWXKcd5prdX2UKGgGaAloD0MILQWk/Y+8cECUhpRSlGgVTSABaBZHQJNZ5yp71I11fZQoaAZoCWgPQwhEFJM3QB5wQJSGlFKUaBVNowFoFkdAk2FrNKRMe3V9lChoBmgJaA9DCK/NxkoMV3FAlIaUUpRoFU3hAWgWR0CTZNBQemvXdX2UKGgGaAloD0MIO1YpPZM9cECUhpRSlGgVTSgCaBZHQJNlSLbYbsF1fZQoaAZoCWgPQwjS/ZyC/MBhQJSGlFKUaBVN6ANoFkdAk2Zna8Hv+nV9lChoBmgJaA9DCMv1tpkKm3JAlIaUUpRoFU3aAWgWR0CTZpL9deIEdX2UKGgGaAloD0MI5usy/KexckCUhpRSlGgVTXQDaBZHQJNorGMn7YV1fZQoaAZoCWgPQwgF3smnR9ByQJSGlFKUaBVNZQFoFkdAk21fUz9CNXV9lChoBmgJaA9DCEJfevtzZGZAlIaUUpRoFU3oA2gWR0CTbyMrVe8gdX2UKGgGaAloD0MI6wJeZlg4ckCUhpRSlGgVTZICaBZHQJNwFKFqSHN1fZQoaAZoCWgPQwhEFJM3QNJkQJSGlFKUaBVN6ANoFkdAk3UfJq7AcnV9lChoBmgJaA9DCNdnzvoUcHJAlIaUUpRoFU05A2gWR0CTdrAB1cMWdX2UKGgGaAloD0MIjNtoAG/pZkCUhpRSlGgVTegDaBZHQJN3fBXS0Bx1fZQoaAZoCWgPQwgK2uTwyaRxQJSGlFKUaBVNRAJoFkdAk3l15OafBnV9lChoBmgJaA9DCPloccYwL3JAlIaUUpRoFU3CAmgWR0CTeaovSMLndX2UKGgGaAloD0MIPrK5al66cECUhpRSlGgVTdsBaBZHQJN6NiYsunN1fZQoaAZoCWgPQwhtyhXeZRpgQJSGlFKUaBVN6ANoFkdAk3rXJDE3sHV9lChoBmgJaA9DCI3ROqoa+WpAlIaUUpRoFU0GA2gWR0CTeu8scyWSdX2UKGgGaAloD0MIjuiedQ0Jb0CUhpRSlGgVTcUBaBZHQJN9E+V1Oj91fZQoaAZoCWgPQwh1P6cgP2JvQJSGlFKUaBVNKAFoFkdAk32bT2FnI3V9lChoBmgJaA9DCFNaf0vAQnJAlIaUUpRoFU0eAmgWR0CTgOp7CzkZdX2UKGgGaAloD0MIG/Z7Yh3BcECUhpRSlGgVTbcBaBZHQJOCeuPmxMZ1fZQoaAZoCWgPQwifHtsyIL1wQJSGlFKUaBVNVwFoFkdAk4iLjghr33V9lChoBmgJaA9DCFzK+WJv33BAlIaUUpRoFU1BAWgWR0CTooIF/x2CdX2UKGgGaAloD0MIjJ5b6AoxcUCUhpRSlGgVTfUBaBZHQJOrRsVLzwt1fZQoaAZoCWgPQwiLh/ccGLpwQJSGlFKUaBVNzQJoFkdAk601L39JjHV9lChoBmgJaA9DCAIs8usH63FAlIaUUpRoFU0tAmgWR0CTrxhqCYkWdX2UKGgGaAloD0MIxf8dUaFqcUCUhpRSlGgVTZABaBZHQJOvTrRjSXt1fZQoaAZoCWgPQwiKd4AnbblxQJSGlFKUaBVNhQNoFkdAk69/P9kz43V9lChoBmgJaA9DCNYdi23Som1AlIaUUpRoFU0yAmgWR0CTsBX0XgtOdX2UKGgGaAloD0MIc0urIXFEX0CUhpRSlGgVTegDaBZHQJOwahf0Eox1fZQoaAZoCWgPQwj6mA8I9PViQJSGlFKUaBVN6ANoFkdAk7DTdgv12HV9lChoBmgJaA9DCJMa2gAs+HBAlIaUUpRoFU1lAmgWR0CTtQC1Z1V6dX2UKGgGaAloD0MI0lEOZpOQcUCUhpRSlGgVTU0BaBZHQJO+jurp7kZ1fZQoaAZoCWgPQwiZYaOsX0hiQJSGlFKUaBVN6ANoFkdAk7778ejmCHV9lChoBmgJaA9DCGB2Tx4WDjpAlIaUUpRoFUvqaBZHQJPA4+0PYnR1fZQoaAZoCWgPQwh/Tdaoh7xiQJSGlFKUaBVN6ANoFkdAk8EIeYD1XnV9lChoBmgJaA9DCNKNsKhImXBAlIaUUpRoFU2aAWgWR0CTw3MOPNmldX2UKGgGaAloD0MIcjRHVn6UXUCUhpRSlGgVTegDaBZHQJPEitA9mpV1fZQoaAZoCWgPQwizQSYZOWxvQJSGlFKUaBVNPwJoFkdAk8nYw22oenV9lChoBmgJaA9DCI+NQLwuYGNAlIaUUpRoFU3oA2gWR0CTyiiJO32FdX2UKGgGaAloD0MIURVT6ae6bECUhpRSlGgVTZ4DaBZHQJPNzRNRFZx1fZQoaAZoCWgPQwiPbK6aJxRwQJSGlFKUaBVNRQJoFkdAk9BrmMfignV9lChoBmgJaA9DCJUtknZj13FAlIaUUpRoFU0mAWgWR0CT0tIJJGvwdX2UKGgGaAloD0MIs0EmGbm+cECUhpRSlGgVTWABaBZHQJPVZ4Uvf0p1fZQoaAZoCWgPQwjRr62ffvViQJSGlFKUaBVN6ANoFkdAk9dnXumaY3V9lChoBmgJaA9DCIL+Qo+Y7WNAlIaUUpRoFU3oA2gWR0CT2Z1ZTyavdX2UKGgGaAloD0MIwFq1a8JwckCUhpRSlGgVTfsCaBZHQJPtWFM7EHd1fZQoaAZoCWgPQwjspSkCXApxQJSGlFKUaBVNngFoFkdAk+6Enb7CSHV9lChoBmgJaA9DCAA3ixcL8XBAlIaUUpRoFU3PAWgWR0CT7wZ+x4Y8dX2UKGgGaAloD0MI2LlpMw4Cc0CUhpRSlGgVTTABaBZHQJPwbIbOu7p1fZQoaAZoCWgPQwiJmujzkalwQJSGlFKUaBVNfwFoFkdAk/FkvCdjG3V9lChoBmgJaA9DCBiyutXz8G1AlIaUUpRoFU2yAWgWR0CT88RBeHBUdX2UKGgGaAloD0MIIqZEEv33cUCUhpRSlGgVTa4DaBZHQJPz8+KTB691fZQoaAZoCWgPQwi1pQ7yup9xQJSGlFKUaBVNRAJoFkdAk/QXkxREW3V9lChoBmgJaA9DCCsU6X5O+GNAlIaUUpRoFU3oA2gWR0CT9HXXiBGydX2UKGgGaAloD0MIwy6KHvgLbECUhpRSlGgVTTUBaBZHQJP1s7Njbzt1fZQoaAZoCWgPQwidvp6v2SZlQJSGlFKUaBVN6ANoFkdAk/bChJyyU3V9lChoBmgJaA9DCDav6qzWPHBAlIaUUpRoFU2JAmgWR0CT+Kl9Sde6dX2UKGgGaAloD0MI4c/wZo0SckCUhpRSlGgVTboBaBZHQJP44tBfKIV1fZQoaAZoCWgPQwjKGB9mLxFEQJSGlFKUaBVL12gWR0CT+bkHUtqYdX2UKGgGaAloD0MI+fNtwZLRckCUhpRSlGgVTaQBaBZHQJP7wxesxPB1fZQoaAZoCWgPQwi/uFSlLT1uQJSGlFKUaBVNOAFoFkdAk/1+EIw/PnV9lChoBmgJaA9DCPmDgedebXJAlIaUUpRoFU10AmgWR0CUAMTGHYYjdX2UKGgGaAloD0MI8NqlDYfka0CUhpRSlGgVTSMBaBZHQJQBsMAmzB11fZQoaAZoCWgPQwjM7V7uk8tuQJSGlFKUaBVNqAFoFkdAlAHd43WFvnV9lChoBmgJaA9DCAk4hCo1iHJAlIaUUpRoFU0vAWgWR0CUAvK77Kq5dX2UKGgGaAloD0MI4ZUkzzXOcUCUhpRSlGgVTYYBaBZHQJQH1fPX05F1fZQoaAZoCWgPQwgwYp8AivdvQJSGlFKUaBVNmAFoFkdAlAjMqvvBrXV9lChoBmgJaA9DCJ7Q609isnBAlIaUUpRoFU1DAmgWR0CUCP9WIXTFdX2UKGgGaAloD0MIH9jxX6DGbUCUhpRSlGgVTTkCaBZHQJQJtlmOEM91fZQoaAZoCWgPQwhNMnIWdsFtQJSGlFKUaBVNiwFoFkdAlAsnndO6/nV9lChoBmgJaA9DCMMrSZ5rBm9AlIaUUpRoFU2eAWgWR0CUDgwrDqGDdX2UKGgGaAloD0MI7pdPVgwhRkCUhpRSlGgVS99oFkdAlA6+lj3Eh3V9lChoBmgJaA9DCL0Yyom2enJAlIaUUpRoFU2WAWgWR0CUEFOlfqoqdX2UKGgGaAloD0MIStBf6BEtbkCUhpRSlGgVTW4BaBZHQJQRmULUkOZ1fZQoaAZoCWgPQwiGIXL6+gxxQJSGlFKUaBVNUgFoFkdAlBGXCsOoYXV9lChoBmgJaA9DCO4+x0eL9nBAlIaUUpRoFU2dAWgWR0CUEZfDDTBqdX2UKGgGaAloD0MIxO3QsFj8cECUhpRSlGgVTVEBaBZHQJQUN69kBjp1fZQoaAZoCWgPQwi+TBQhtalwQJSGlFKUaBVNXQFoFkdAlBST/VAiV3V9lChoBmgJaA9DCMUAiSZQAnBAlIaUUpRoFU1fAWgWR0CUGdSeAd4ndX2UKGgGaAloD0MInrXbLvR2cUCUhpRSlGgVTR8BaBZHQJQbr9Nvfj11fZQoaAZoCWgPQwgziA/seLRtQJSGlFKUaBVNiwFoFkdAlBxQlByCF3V9lChoBmgJaA9DCNnPYikSV3JAlIaUUpRoFU2JAWgWR0CUHf7wKBuodX2UKGgGaAloD0MI290DdF+UcUCUhpRSlGgVTScBaBZHQJQfQvlEJBx1ZS4="
74
+ },
75
+ "ep_success_buffer": {
76
+ ":type:": "<class 'collections.deque'>",
77
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
78
+ },
79
+ "_n_updates": 248,
80
+ "n_steps": 1024,
81
+ "gamma": 0.999,
82
+ "gae_lambda": 0.98,
83
+ "ent_coef": 0.01,
84
+ "vf_coef": 0.5,
85
+ "max_grad_norm": 0.5,
86
+ "batch_size": 64,
87
+ "n_epochs": 4,
88
+ "clip_range": {
89
+ ":type:": "<class 'function'>",
90
+ ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
91
+ },
92
+ "clip_range_vf": null,
93
+ "normalize_advantage": true,
94
+ "target_kl": null
95
+ }
ppo-LunarLander-v2/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:f786ac8a4660de6b7ad5166f430fd5023e08df54cbe30bfdfaf3418bd587d304
3
+ size 87929
ppo-LunarLander-v2/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:6c66e3160d4ff0c2d022d00a6dfcfd7f9de3eada11fa6aba373f751bd71cc634
3
+ size 43393
ppo-LunarLander-v2/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
ppo-LunarLander-v2/system_info.txt ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ - OS: Linux-5.10.147+-x86_64-with-glibc2.29 # 1 SMP Sat Dec 10 16:00:40 UTC 2022
2
+ - Python: 3.8.10
3
+ - Stable-Baselines3: 1.7.0
4
+ - PyTorch: 1.13.1+cu116
5
+ - GPU Enabled: True
6
+ - Numpy: 1.22.4
7
+ - Gym: 0.21.0
replay.mp4 ADDED
Binary file (225 kB). View file
 
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": 247.23363690775622, "std_reward": 17.24656126854241, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-02-28T15:54:38.955723"}