File size: 4,530 Bytes
35199db a288dbb 35199db 5ba534e 35199db 762796b 5ba534e aec7071 d161508 762796b aec7071 35199db 10021fb 35199db aec7071 0f5c4ad d161508 0f5c4ad aec7071 0f5c4ad aec7071 35199db bb69c02 35199db bb69c02 35199db 10021fb 35199db aec7071 35199db 5ba534e aec7071 35199db bb69c02 0f5c4ad bb69c02 aec7071 35199db a288dbb 35199db a288dbb 35199db c0f39aa 35199db bb69c02 a288dbb aec7071 a288dbb 35199db c0f39aa 35199db bb69c02 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 |
import numpy as np
import time
import os, sys
from pathlib import Path
from concrete.ml.deployment import FHEModelClient
import requests
def to_json(python_object):
if isinstance(python_object, bytes):
return {"__class__": "bytes", "__value__": list(python_object)}
raise TypeError(repr(python_object) + " is not JSON serializable")
def from_json(python_object):
if "__class__" in python_object:
return bytes(python_object["__value__"])
API_URL = "https://h0cvbig1fkmf57eb.eu-west-1.aws.endpoints.huggingface.cloud"
headers = {
"Authorization": "Bearer " + os.environ.get("HF_TOKEN"),
"Content-Type": "application/json",
}
def query(payload, allowed_retries=2):
response = requests.post(API_URL, headers=headers, json=payload)
if response.json() is not None and "error" in response.json():
if allowed_retries > 0:
# Sometimes we have "Bad gateway" error
print(f"Warning, error {response=} {response.json()=} in the query, relaunching")
return query(payload, allowed_retries - 1)
assert False, f"Got an error: {response=} {response.json()=}"
return response.json()
path_to_model = Path("compiled_model")
# Decision-tree in FHE
from sklearn.datasets import fetch_openml
from sklearn.model_selection import train_test_split
import numpy
features, classes = fetch_openml(data_id=44, as_frame=False, cache=True, return_X_y=True)
classes = classes.astype(numpy.int64)
_, X_test, _, Y_test = train_test_split(
features,
classes,
test_size=0.15,
random_state=42,
)
# Recover parameters for client side
fhemodel_client = FHEModelClient(path_to_model)
# Generate the keys
fhemodel_client.generate_private_and_evaluation_keys()
evaluation_keys = fhemodel_client.get_serialized_evaluation_keys()
# Save the key in the database
evaluation_keys_remaining = evaluation_keys[:]
uid = None
is_first = True
is_finished = False
i = 0
packet_size = 1024 * 1024 * 100
while not is_finished:
# Send by packets of 100M
if sys.getsizeof(evaluation_keys_remaining) > packet_size:
evaluation_keys_piece = evaluation_keys_remaining[:packet_size]
evaluation_keys_remaining = evaluation_keys_remaining[packet_size:]
else:
evaluation_keys_piece = evaluation_keys_remaining
evaluation_keys_remaining = None
is_finished = True
print(
f"Sending {i}-th piece of the key (remaining size is {sys.getsizeof(evaluation_keys_remaining) / 1024:.2f} kbytes)"
)
i += 1
if is_first:
is_first = False
payload = {
"inputs": "fake",
"evaluation_keys": to_json(evaluation_keys_piece),
"method": "save_key",
}
uid = query(payload)["uid"]
print(f"Storing the key in the database under {uid=}")
else:
payload = {
"inputs": "fake",
"evaluation_keys": to_json(evaluation_keys_piece),
"method": "append_key",
"uid": uid,
}
query(payload)
# Test the handler
nb_good = 0
nb_samples = len(X_test)
verbose = True
time_start = time.time()
duration = 0
is_first = True
for i in range(nb_samples):
# Quantize the input and encrypt it
encrypted_inputs = fhemodel_client.quantize_encrypt_serialize(X_test[i].reshape(1, -1))
# Prepare the payload
payload = {
"inputs": "fake",
"encrypted_inputs": to_json(encrypted_inputs),
"method": "inference",
"uid": uid,
}
if is_first:
print(f"Size of the payload: {sys.getsizeof(payload) / 1024:.2f} kilobytes")
is_first = False
# Run the inference on HF servers
duration -= time.time()
duration_inference = -time.time()
encrypted_prediction = query(payload)
duration += time.time()
duration_inference += time.time()
encrypted_prediction = from_json(encrypted_prediction)
# Decrypt the result and dequantize
prediction_proba = fhemodel_client.deserialize_decrypt_dequantize(encrypted_prediction)[0]
prediction = np.argmax(prediction_proba)
if verbose:
print(
f"for {i}-th input, {prediction=} with expected {Y_test[i]} in {duration_inference:.3f} seconds"
)
# Measure accuracy
nb_good += Y_test[i] == prediction
print(f"Accuracy on {nb_samples} samples is {nb_good * 1. / nb_samples}")
print(f"Total time: {time.time() - time_start:.3f} seconds")
print(f"Duration per inference: {duration / nb_samples:.3f} seconds")
|