File size: 3,078 Bytes
35199db
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e20f6b1
10021fb
35199db
 
5ba534e
35199db
 
 
 
5ba534e
35199db
 
 
 
 
10021fb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c0f39aa
10021fb
 
35199db
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
10021fb
35199db
c0f39aa
 
 
e20f6b1
35199db
 
 
5ba534e
 
35199db
 
 
 
 
 
 
c0f39aa
35199db
 
 
 
 
 
c0f39aa
35199db
 
c0f39aa
35199db
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
import numpy as np
import time
import os, sys

from pathlib import Path

from concrete.ml.deployment import FHEModelClient

import requests


def to_json(python_object):
    if isinstance(python_object, bytes):
        return {"__class__": "bytes", "__value__": list(python_object)}
    raise TypeError(repr(python_object) + " is not JSON serializable")


def from_json(python_object):
    if "__class__" in python_object:
        return bytes(python_object["__value__"])


# TODO: put the right link `API_URL` for your entry point
API_URL = "https://yw1dgyuig6ff5pft.us-east-1.aws.endpoints.huggingface.cloud"
headers = {
    "Authorization": "Bearer " + os.environ.get("HF_TOKEN"),
    "Content-Type": "application/json",
}


def query(payload):
    response = requests.post(API_URL, headers=headers, json=payload)
    return response.json()


path_to_model = Path("compiled_model")

# Decision-tree in FHE
from sklearn.datasets import fetch_openml
from sklearn.model_selection import train_test_split
import numpy

features, classes = fetch_openml(data_id=44, as_frame=False, cache=True, return_X_y=True)
classes = classes.astype(numpy.int64)

_, X_test, _, Y_test = train_test_split(
    features,
    classes,
    test_size=0.15,
    random_state=42,
)

NB_SAMPLES = 10
X_test = X_test[:NB_SAMPLES]
Y_test = Y_test[:NB_SAMPLES]

# Recover parameters for client side
fhemodel_client = FHEModelClient(path_to_model)

# Generate the keys
fhemodel_client.generate_private_and_evaluation_keys()
evaluation_keys = fhemodel_client.get_serialized_evaluation_keys()

# Test the handler
nb_good = 0
nb_samples = len(X_test)
verbose = False
time_start = time.time()
duration = 0

for i in range(nb_samples):

    # Quantize the input and encrypt it
    encrypted_inputs = fhemodel_client.quantize_encrypt_serialize(X_test[i].reshape(1, -1))

    if verbose:
        print(f"Size of encrypted input: {sys.getsizeof(encrypted_inputs) / 1024 / 1024} megabytes")
        print(f"Size of keys: {sys.getsizeof(evaluation_keys) / 1024 / 1024} megabytes")

    # Prepare the payload, including the evaluation keys which are needed server side
    payload = {
        "inputs": "fake",
        "encrypted_inputs": to_json(encrypted_inputs),
        "evaluation_keys": to_json(evaluation_keys),
    }

    # Run the inference on HF servers
    duration -= time.time()
    encrypted_prediction = query(payload)
    duration += time.time()

    encrypted_prediction = from_json(encrypted_prediction)

    # Decrypt the result and dequantize
    prediction_proba = fhemodel_client.deserialize_decrypt_dequantize(encrypted_prediction)[0]
    prediction = np.argmax(prediction_proba)

    if verbose or True:
        print(f"for {i}-th input, {prediction=} with expected {Y_test[i]}")

    # Measure accuracy
    nb_good += Y_test[i] == prediction

print(f"Accuracy on {nb_samples} samples is {nb_good * 1. / nb_samples}")
print(f"Total time: {time.time() - time_start} seconds")
print(f"Duration in inferences: {duration} seconds")
print(f"Duration per inference: {duration / nb_samples} seconds")