File size: 3,150 Bytes
35199db
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a288dbb
35199db
 
5ba534e
35199db
 
 
 
5ba534e
35199db
 
 
 
 
10021fb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c0f39aa
10021fb
 
35199db
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
10021fb
35199db
c0f39aa
 
 
e20f6b1
35199db
 
 
5ba534e
 
35199db
 
 
 
a288dbb
35199db
 
a288dbb
35199db
c0f39aa
35199db
 
 
 
 
 
a288dbb
 
 
35199db
 
c0f39aa
35199db
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
import numpy as np
import time
import os, sys

from pathlib import Path

from concrete.ml.deployment import FHEModelClient

import requests


def to_json(python_object):
    if isinstance(python_object, bytes):
        return {"__class__": "bytes", "__value__": list(python_object)}
    raise TypeError(repr(python_object) + " is not JSON serializable")


def from_json(python_object):
    if "__class__" in python_object:
        return bytes(python_object["__value__"])


API_URL = "https://h0cvbig1fkmf57eb.eu-west-1.aws.endpoints.huggingface.cloud"
headers = {
    "Authorization": "Bearer " + os.environ.get("HF_TOKEN"),
    "Content-Type": "application/json",
}


def query(payload):
    response = requests.post(API_URL, headers=headers, json=payload)
    return response.json()


path_to_model = Path("compiled_model")

# Decision-tree in FHE
from sklearn.datasets import fetch_openml
from sklearn.model_selection import train_test_split
import numpy

features, classes = fetch_openml(data_id=44, as_frame=False, cache=True, return_X_y=True)
classes = classes.astype(numpy.int64)

_, X_test, _, Y_test = train_test_split(
    features,
    classes,
    test_size=0.15,
    random_state=42,
)

NB_SAMPLES = 10
X_test = X_test[:NB_SAMPLES]
Y_test = Y_test[:NB_SAMPLES]

# Recover parameters for client side
fhemodel_client = FHEModelClient(path_to_model)

# Generate the keys
fhemodel_client.generate_private_and_evaluation_keys()
evaluation_keys = fhemodel_client.get_serialized_evaluation_keys()

# Test the handler
nb_good = 0
nb_samples = len(X_test)
verbose = False
time_start = time.time()
duration = 0

for i in range(nb_samples):

    # Quantize the input and encrypt it
    encrypted_inputs = fhemodel_client.quantize_encrypt_serialize(X_test[i].reshape(1, -1))

    if verbose:
        print(f"Size of encrypted input: {sys.getsizeof(encrypted_inputs) / 1024 / 1024} megabytes")
        print(f"Size of keys: {sys.getsizeof(evaluation_keys) / 1024 / 1024} megabytes")

    # Prepare the payload, including the evaluation keys which are needed server side
    payload = {
        "inputs": "fake",
        "encrypted_inputs": to_json(encrypted_inputs),
        "evaluation_keys": to_json(evaluation_keys),
    }

    # Run the inference on HF servers
    duration -= time.time()
    duration_inference = -time.time()
    encrypted_prediction = query(payload)
    duration += time.time()
    duration_inference += time.time()

    encrypted_prediction = from_json(encrypted_prediction)

    # Decrypt the result and dequantize
    prediction_proba = fhemodel_client.deserialize_decrypt_dequantize(encrypted_prediction)[0]
    prediction = np.argmax(prediction_proba)

    if verbose or True:
        print(
            f"for {i}-th input, {prediction=} with expected {Y_test[i]} in {duration_inference} seconds"
        )

    # Measure accuracy
    nb_good += Y_test[i] == prediction

print(f"Accuracy on {nb_samples} samples is {nb_good * 1. / nb_samples}")
print(f"Total time: {time.time() - time_start} seconds")
print(f"Duration in inferences: {duration} seconds")
print(f"Duration per inference: {duration / nb_samples} seconds")