File size: 2,274 Bytes
f97ae1d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
---

library_name: transformers
license: cc-by-nc-4.0
base_model: MCG-NJU/videomae-small-finetuned-kinetics
tags:
- generated_from_trainer
metrics:
- accuracy
model-index:
- name: videomae-small-finetuned-kinetics-finetuned-2
  results: []
---


<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# videomae-small-finetuned-kinetics-finetuned-2

This model is a fine-tuned version of [MCG-NJU/videomae-small-finetuned-kinetics](https://huggingface.co/MCG-NJU/videomae-small-finetuned-kinetics) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.6633
- Accuracy: 0.7652

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 5e-05

- train_batch_size: 32

- eval_batch_size: 32

- seed: 42

- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments

- lr_scheduler_type: linear

- lr_scheduler_warmup_ratio: 0.1
- training_steps: 2260



### Training results



| Training Loss | Epoch  | Step | Validation Loss | Accuracy |

|:-------------:|:------:|:----:|:---------------:|:--------:|

| 0.9644        | 0.1004 | 227  | 0.9733          | 0.5777   |

| 0.8823        | 1.1004 | 454  | 0.8691          | 0.6676   |

| 0.826         | 2.1004 | 681  | 0.8010          | 0.7094   |

| 0.7422        | 3.1004 | 908  | 0.7514          | 0.7371   |

| 0.7206        | 4.1004 | 1135 | 0.7170          | 0.7508   |

| 0.6806        | 5.1004 | 1362 | 0.6924          | 0.7543   |

| 0.6826        | 6.1004 | 1589 | 0.6757          | 0.7585   |

| 0.6756        | 7.1004 | 1816 | 0.6652          | 0.7631   |

| 0.6964        | 8.1004 | 2043 | 0.6591          | 0.7655   |

| 0.6943        | 9.0960 | 2260 | 0.6571          | 0.7666   |





### Framework versions



- Transformers 4.47.1

- Pytorch 2.5.0+cu124

- Datasets 3.2.0

- Tokenizers 0.21.0