|  | import os | 
					
						
						|  | import torch | 
					
						
						|  | from typing import List, Optional, Union, Dict | 
					
						
						|  | from sentencepiece import SentencePieceProcessor | 
					
						
						|  | from transformers import PreTrainedTokenizer | 
					
						
						|  | from transformers.utils import logging, PaddingStrategy | 
					
						
						|  | from transformers.tokenization_utils_base import EncodedInput, BatchEncoding | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | class SPTokenizer: | 
					
						
						|  | def __init__(self, model_path: str): | 
					
						
						|  |  | 
					
						
						|  | assert os.path.isfile(model_path), model_path | 
					
						
						|  | self.sp_model = SentencePieceProcessor(model_file=model_path) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | self.n_words: int = self.sp_model.vocab_size() | 
					
						
						|  | self.bos_id: int = self.sp_model.bos_id() | 
					
						
						|  | self.eos_id: int = self.sp_model.eos_id() | 
					
						
						|  | self.pad_id: int = self.sp_model.unk_id() | 
					
						
						|  | assert self.sp_model.vocab_size() == self.sp_model.get_piece_size() | 
					
						
						|  |  | 
					
						
						|  | special_tokens = ["[MASK]", "[gMASK]", "[sMASK]", "sop", "eop"] | 
					
						
						|  | self.special_tokens = {} | 
					
						
						|  | self.index_special_tokens = {} | 
					
						
						|  | for token in special_tokens: | 
					
						
						|  | self.special_tokens[token] = self.n_words | 
					
						
						|  | self.index_special_tokens[self.n_words] = token | 
					
						
						|  | self.n_words += 1 | 
					
						
						|  |  | 
					
						
						|  | def tokenize(self, s: str): | 
					
						
						|  | return self.sp_model.EncodeAsPieces(s) | 
					
						
						|  |  | 
					
						
						|  | def encode(self, s: str, bos: bool = False, eos: bool = False) -> List[int]: | 
					
						
						|  | assert type(s) is str | 
					
						
						|  | t = self.sp_model.encode(s) | 
					
						
						|  | if bos: | 
					
						
						|  | t = [self.bos_id] + t | 
					
						
						|  | if eos: | 
					
						
						|  | t = t + [self.eos_id] | 
					
						
						|  | return t | 
					
						
						|  |  | 
					
						
						|  | def decode(self, t: List[int]) -> str: | 
					
						
						|  | return self.sp_model.decode(t) | 
					
						
						|  |  | 
					
						
						|  | def decode_tokens(self, tokens: List[str]) -> str: | 
					
						
						|  | text = self.sp_model.DecodePieces(tokens) | 
					
						
						|  | return text | 
					
						
						|  |  | 
					
						
						|  | def convert_token_to_id(self, token): | 
					
						
						|  | """ Converts a token (str) in an id using the vocab. """ | 
					
						
						|  | if token in self.special_tokens: | 
					
						
						|  | return self.special_tokens[token] | 
					
						
						|  | return self.sp_model.PieceToId(token) | 
					
						
						|  |  | 
					
						
						|  | def convert_id_to_token(self, index): | 
					
						
						|  | """Converts an index (integer) in a token (str) using the vocab.""" | 
					
						
						|  | if index in self.index_special_tokens or index in [self.eos_id, self.bos_id, self.pad_id] or index < 0: | 
					
						
						|  | return "" | 
					
						
						|  | return self.sp_model.IdToPiece(index) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | class ChatGLMTokenizer(PreTrainedTokenizer): | 
					
						
						|  | vocab_files_names = {"vocab_file": "tokenizer.model"} | 
					
						
						|  |  | 
					
						
						|  | model_input_names = ["input_ids", "attention_mask", "position_ids"] | 
					
						
						|  |  | 
					
						
						|  | def __init__(self, vocab_file, padding_side="left", clean_up_tokenization_spaces=False, **kwargs): | 
					
						
						|  | super().__init__(padding_side=padding_side, clean_up_tokenization_spaces=clean_up_tokenization_spaces, **kwargs) | 
					
						
						|  | self.name = "GLMTokenizer" | 
					
						
						|  |  | 
					
						
						|  | self.vocab_file = vocab_file | 
					
						
						|  | self.tokenizer = SPTokenizer(vocab_file) | 
					
						
						|  | self.special_tokens = { | 
					
						
						|  | "<bos>": self.tokenizer.bos_id, | 
					
						
						|  | "<eos>": self.tokenizer.eos_id, | 
					
						
						|  | "<pad>": self.tokenizer.pad_id | 
					
						
						|  | } | 
					
						
						|  |  | 
					
						
						|  | def get_command(self, token): | 
					
						
						|  | if token in self.special_tokens: | 
					
						
						|  | return self.special_tokens[token] | 
					
						
						|  | assert token in self.tokenizer.special_tokens, f"{token} is not a special token for {self.name}" | 
					
						
						|  | return self.tokenizer.special_tokens[token] | 
					
						
						|  |  | 
					
						
						|  | @property | 
					
						
						|  | def unk_token(self) -> str: | 
					
						
						|  | return "<unk>" | 
					
						
						|  |  | 
					
						
						|  | @property | 
					
						
						|  | def pad_token(self) -> str: | 
					
						
						|  | return "<unk>" | 
					
						
						|  |  | 
					
						
						|  | @property | 
					
						
						|  | def pad_token_id(self): | 
					
						
						|  | return self.get_command("<pad>") | 
					
						
						|  |  | 
					
						
						|  | @property | 
					
						
						|  | def eos_token(self) -> str: | 
					
						
						|  | return "</s>" | 
					
						
						|  |  | 
					
						
						|  | @property | 
					
						
						|  | def eos_token_id(self): | 
					
						
						|  | return self.get_command("<eos>") | 
					
						
						|  |  | 
					
						
						|  | @property | 
					
						
						|  | def vocab_size(self): | 
					
						
						|  | return self.tokenizer.n_words | 
					
						
						|  |  | 
					
						
						|  | def get_vocab(self): | 
					
						
						|  | """ Returns vocab as a dict """ | 
					
						
						|  | vocab = {self._convert_id_to_token(i): i for i in range(self.vocab_size)} | 
					
						
						|  | vocab.update(self.added_tokens_encoder) | 
					
						
						|  | return vocab | 
					
						
						|  |  | 
					
						
						|  | def _tokenize(self, text, **kwargs): | 
					
						
						|  | return self.tokenizer.tokenize(text) | 
					
						
						|  |  | 
					
						
						|  | def _convert_token_to_id(self, token): | 
					
						
						|  | """ Converts a token (str) in an id using the vocab. """ | 
					
						
						|  | return self.tokenizer.convert_token_to_id(token) | 
					
						
						|  |  | 
					
						
						|  | def _convert_id_to_token(self, index): | 
					
						
						|  | """Converts an index (integer) in a token (str) using the vocab.""" | 
					
						
						|  | return self.tokenizer.convert_id_to_token(index) | 
					
						
						|  |  | 
					
						
						|  | def convert_tokens_to_string(self, tokens: List[str]) -> str: | 
					
						
						|  | return self.tokenizer.decode_tokens(tokens) | 
					
						
						|  |  | 
					
						
						|  | def save_vocabulary(self, save_directory, filename_prefix=None): | 
					
						
						|  | """ | 
					
						
						|  | Save the vocabulary and special tokens file to a directory. | 
					
						
						|  |  | 
					
						
						|  | Args: | 
					
						
						|  | save_directory (`str`): | 
					
						
						|  | The directory in which to save the vocabulary. | 
					
						
						|  | filename_prefix (`str`, *optional*): | 
					
						
						|  | An optional prefix to add to the named of the saved files. | 
					
						
						|  |  | 
					
						
						|  | Returns: | 
					
						
						|  | `Tuple(str)`: Paths to the files saved. | 
					
						
						|  | """ | 
					
						
						|  | if os.path.isdir(save_directory): | 
					
						
						|  | vocab_file = os.path.join( | 
					
						
						|  | save_directory, self.vocab_files_names["vocab_file"] | 
					
						
						|  | ) | 
					
						
						|  | else: | 
					
						
						|  | vocab_file = save_directory | 
					
						
						|  |  | 
					
						
						|  | with open(self.vocab_file, 'rb') as fin: | 
					
						
						|  | proto_str = fin.read() | 
					
						
						|  |  | 
					
						
						|  | with open(vocab_file, "wb") as writer: | 
					
						
						|  | writer.write(proto_str) | 
					
						
						|  |  | 
					
						
						|  | return (vocab_file,) | 
					
						
						|  |  | 
					
						
						|  | def get_prefix_tokens(self): | 
					
						
						|  | prefix_tokens = [self.get_command("[gMASK]"), self.get_command("sop")] | 
					
						
						|  | return prefix_tokens | 
					
						
						|  |  | 
					
						
						|  | def build_prompt(self, query, history=None): | 
					
						
						|  | if history is None: | 
					
						
						|  | history = [] | 
					
						
						|  | prompt = "" | 
					
						
						|  | for i, (old_query, response) in enumerate(history): | 
					
						
						|  | prompt += "[Round {}]\n\n问:{}\n\n答:{}\n\n".format(i + 1, old_query, response) | 
					
						
						|  | prompt += "[Round {}]\n\n问:{}\n\n答:".format(len(history) + 1, query) | 
					
						
						|  | return prompt | 
					
						
						|  |  | 
					
						
						|  | def build_inputs_with_special_tokens( | 
					
						
						|  | self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None | 
					
						
						|  | ) -> List[int]: | 
					
						
						|  | """ | 
					
						
						|  | Build model inputs from a sequence or a pair of sequence for sequence classification tasks by concatenating and | 
					
						
						|  | adding special tokens. A BERT sequence has the following format: | 
					
						
						|  |  | 
					
						
						|  | - single sequence: `[CLS] X [SEP]` | 
					
						
						|  | - pair of sequences: `[CLS] A [SEP] B [SEP]` | 
					
						
						|  |  | 
					
						
						|  | Args: | 
					
						
						|  | token_ids_0 (`List[int]`): | 
					
						
						|  | List of IDs to which the special tokens will be added. | 
					
						
						|  | token_ids_1 (`List[int]`, *optional*): | 
					
						
						|  | Optional second list of IDs for sequence pairs. | 
					
						
						|  |  | 
					
						
						|  | Returns: | 
					
						
						|  | `List[int]`: List of [input IDs](../glossary#input-ids) with the appropriate special tokens. | 
					
						
						|  | """ | 
					
						
						|  | prefix_tokens = self.get_prefix_tokens() | 
					
						
						|  | token_ids_0 = prefix_tokens + token_ids_0 | 
					
						
						|  | if token_ids_1 is not None: | 
					
						
						|  | token_ids_0 = token_ids_0 + token_ids_1 + [self.get_command("<eos>")] | 
					
						
						|  | return token_ids_0 | 
					
						
						|  |  | 
					
						
						|  | def _pad( | 
					
						
						|  | self, | 
					
						
						|  | encoded_inputs: Union[Dict[str, EncodedInput], BatchEncoding], | 
					
						
						|  | max_length: Optional[int] = None, | 
					
						
						|  | padding_strategy: PaddingStrategy = PaddingStrategy.DO_NOT_PAD, | 
					
						
						|  | pad_to_multiple_of: Optional[int] = None, | 
					
						
						|  | return_attention_mask: Optional[bool] = None, | 
					
						
						|  | ) -> dict: | 
					
						
						|  | """ | 
					
						
						|  | Pad encoded inputs (on left/right and up to predefined length or max length in the batch) | 
					
						
						|  |  | 
					
						
						|  | Args: | 
					
						
						|  | encoded_inputs: | 
					
						
						|  | Dictionary of tokenized inputs (`List[int]`) or batch of tokenized inputs (`List[List[int]]`). | 
					
						
						|  | max_length: maximum length of the returned list and optionally padding length (see below). | 
					
						
						|  | Will truncate by taking into account the special tokens. | 
					
						
						|  | padding_strategy: PaddingStrategy to use for padding. | 
					
						
						|  |  | 
					
						
						|  | - PaddingStrategy.LONGEST Pad to the longest sequence in the batch | 
					
						
						|  | - PaddingStrategy.MAX_LENGTH: Pad to the max length (default) | 
					
						
						|  | - PaddingStrategy.DO_NOT_PAD: Do not pad | 
					
						
						|  | The tokenizer padding sides are defined in self.padding_side: | 
					
						
						|  |  | 
					
						
						|  | - 'left': pads on the left of the sequences | 
					
						
						|  | - 'right': pads on the right of the sequences | 
					
						
						|  | pad_to_multiple_of: (optional) Integer if set will pad the sequence to a multiple of the provided value. | 
					
						
						|  | This is especially useful to enable the use of Tensor Core on NVIDIA hardware with compute capability | 
					
						
						|  | `>= 7.5` (Volta). | 
					
						
						|  | return_attention_mask: | 
					
						
						|  | (optional) Set to False to avoid returning attention mask (default: set to model specifics) | 
					
						
						|  | """ | 
					
						
						|  |  | 
					
						
						|  | assert self.padding_side == "left" | 
					
						
						|  |  | 
					
						
						|  | required_input = encoded_inputs[self.model_input_names[0]] | 
					
						
						|  | seq_length = len(required_input) | 
					
						
						|  |  | 
					
						
						|  | if padding_strategy == PaddingStrategy.LONGEST: | 
					
						
						|  | max_length = len(required_input) | 
					
						
						|  |  | 
					
						
						|  | if max_length is not None and pad_to_multiple_of is not None and (max_length % pad_to_multiple_of != 0): | 
					
						
						|  | max_length = ((max_length // pad_to_multiple_of) + 1) * pad_to_multiple_of | 
					
						
						|  |  | 
					
						
						|  | needs_to_be_padded = padding_strategy != PaddingStrategy.DO_NOT_PAD and len(required_input) != max_length | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | if "attention_mask" not in encoded_inputs: | 
					
						
						|  | encoded_inputs["attention_mask"] = [1] * seq_length | 
					
						
						|  |  | 
					
						
						|  | if "position_ids" not in encoded_inputs: | 
					
						
						|  | encoded_inputs["position_ids"] = list(range(seq_length)) | 
					
						
						|  |  | 
					
						
						|  | if needs_to_be_padded: | 
					
						
						|  | difference = max_length - len(required_input) | 
					
						
						|  |  | 
					
						
						|  | if "attention_mask" in encoded_inputs: | 
					
						
						|  | encoded_inputs["attention_mask"] = [0] * difference + encoded_inputs["attention_mask"] | 
					
						
						|  | if "position_ids" in encoded_inputs: | 
					
						
						|  | encoded_inputs["position_ids"] = [0] * difference + encoded_inputs["position_ids"] | 
					
						
						|  | encoded_inputs[self.model_input_names[0]] = [self.pad_token_id] * difference + required_input | 
					
						
						|  |  | 
					
						
						|  | return encoded_inputs | 
					
						
						|  |  |