|
import os |
|
import json |
|
import torch |
|
import torchvision.transforms as transforms |
|
import os.path |
|
import numpy as np |
|
import cv2 |
|
from torch.utils.data import Dataset |
|
import random |
|
from .__base_dataset__ import BaseDataset |
|
|
|
|
|
class ETH3DDataset(BaseDataset): |
|
def __init__(self, cfg, phase, **kwargs): |
|
super(ETH3DDataset, self).__init__( |
|
cfg=cfg, |
|
phase=phase, |
|
**kwargs) |
|
self.metric_scale = cfg.metric_scale |
|
|
|
def __getitem__(self, idx): |
|
anno = self.annotations['files'][idx] |
|
curr_rgb_path = os.path.join(self.data_root, anno['rgb_path']) |
|
curr_depth_path = os.path.join(self.depth_root, anno['depth_path']) |
|
meta_data = self.load_meta_data(anno) |
|
ori_curr_intrinsic = [2000, 2000, 3024, 2016] |
|
|
|
curr_rgb = cv2.imread(curr_rgb_path) |
|
with open(curr_depth_path, 'r') as f: |
|
imgfile = np.fromfile(f, np.float32) |
|
curr_depth = imgfile.reshape((4032, 6048)) |
|
curr_depth[curr_depth>100] = 0 |
|
|
|
|
|
|
|
|
|
|
|
|
|
ori_h, ori_w, _ = curr_rgb.shape |
|
|
|
curr_cam_model = self.create_cam_model(curr_rgb.shape[0], curr_rgb.shape[1], ori_curr_intrinsic) |
|
|
|
|
|
|
|
|
|
transform_paras = dict() |
|
rgbs, depths, intrinsics, cam_models, _, other_labels, transform_paras = self.img_transforms( |
|
images=[curr_rgb, ], |
|
labels=[curr_depth, ], |
|
intrinsics=[ori_curr_intrinsic,], |
|
cam_models=[curr_cam_model, ], |
|
transform_paras=transform_paras) |
|
|
|
depth_out = self.clip_depth(curr_depth) * self.depth_range[1] |
|
|
|
filename = os.path.basename(anno['rgb_path']) |
|
curr_intrinsic_mat = self.intrinsics_list2mat(intrinsics[0]) |
|
|
|
pad = transform_paras['pad'] if 'pad' in transform_paras else [0,0,0,0] |
|
scale_ratio = transform_paras['label_scale_factor'] if 'label_scale_factor' in transform_paras else 1.0 |
|
cam_models_stacks = [ |
|
torch.nn.functional.interpolate(cam_models[0][None, :, :, :], size=(cam_models[0].shape[1]//i, cam_models[0].shape[2]//i), mode='bilinear', align_corners=False).squeeze() |
|
for i in [2, 4, 8, 16, 32] |
|
] |
|
raw_rgb = torch.from_numpy(curr_rgb) |
|
data = dict(input=rgbs[0], |
|
target=depth_out, |
|
intrinsic=curr_intrinsic_mat, |
|
filename=filename, |
|
dataset=self.data_name, |
|
cam_model=cam_models_stacks, |
|
ref_input=rgbs[1:], |
|
tmpl_flg=False, |
|
pad=pad, |
|
scale=scale_ratio, |
|
raw_rgb=raw_rgb, |
|
normal = np.zeros_like(curr_rgb.transpose((2,0,1))), |
|
|
|
) |
|
return data |
|
|
|
def process_depth(self, depth): |
|
depth[depth>65500] = 0 |
|
depth /= self.metric_scale |
|
return depth |
|
|
|
|
|
|
|
if __name__ == '__main__': |
|
from mmcv.utils import Config |
|
cfg = Config.fromfile('mono/configs/Apolloscape_DDAD/convnext_base.cascade.1m.sgd.mae.py') |
|
dataset_i = NYUDataset(cfg['Apolloscape'], 'train', **cfg.data_basic) |
|
print(dataset_i) |
|
|