Metric3D / training /mono /datasets /ddad_dataset.py
zach
initial commit based on github repo
3ef1661
raw
history blame
1.01 kB
import os
import json
import torch
import torchvision.transforms as transforms
import os.path
import numpy as np
import cv2
from torch.utils.data import Dataset
import random
from .__base_dataset__ import BaseDataset
class DDADDataset(BaseDataset):
def __init__(self, cfg, phase, **kwargs):
super(DDADDataset, self).__init__(
cfg=cfg,
phase=phase,
**kwargs)
self.metric_scale = cfg.metric_scale
#self.cap_range = self.depth_range # in meter
def process_depth(self, depth, rgb):
depth[depth>65500] = 0
depth /= 200.0
# depth[(depth>self.cap_range[1]) | (depth<self.cap_range[0])] = -1
# depth /= self.cap_range[1]
return depth
if __name__ == '__main__':
from mmcv.utils import Config
cfg = Config.fromfile('mono/configs/Apolloscape_DDAD/convnext_base.cascade.1m.sgd.mae.py')
dataset_i = ApolloscapeDataset(cfg['Apolloscape'], 'train', **cfg.data_basic)
print(dataset_i)