File size: 31,120 Bytes
3ef1661 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 |
# import glob
import cv2 as cv2
import numpy as np
# import matplotlib.pyplot as plt
import random
import math
###################### HLS #############################
def hls(image,src='RGB'):
verify_image(image)
if(is_list(image)):
image_HLS=[]
image_list=image
for img in image_list:
eval('image_HLS.append(cv2.cvtColor(img,cv2.COLOR_'+src.upper()+'2HLS))')
else:
image_HLS = eval('cv2.cvtColor(image,cv2.COLOR_'+src.upper()+'2HLS)')
return image_HLS
def hue(image,src='RGB'):
verify_image(image)
if(is_list(image)):
image_Hue=[]
image_list=image
for img in image_list:
image_Hue.append(hls(img,src)[:,:,0])
else:
image_Hue= hls(image,src)[:,:,0]
return image_Hue
def lightness(image,src='RGB'):
verify_image(image)
if(is_list(image)):
image_lightness=[]
image_list=image
for img in image_list:
image_lightness.append(hls(img,src)[:,:,1])
else:
image_lightness= hls(image,src)[:,:,1]
return image_lightness
def saturation(image,src='RGB'):
verify_image(image)
if(is_list(image)):
image_saturation=[]
image_list=image
for img in image_list:
image_saturation.append(hls(img,src)[:,:,2])
else:
image_saturation= hls(image,src)[:,:,2]
return image_saturation
###################### HSV #############################
def hsv(image,src='RGB'):
verify_image(image)
if(is_list(image)):
image_HSV=[]
image_list=image
for img in image_list:
eval('image_HSV.append(cv2.cvtColor(img,cv2.COLOR_'+src.upper()+'2HSV))')
else:
image_HSV = eval('cv2.cvtColor(image,cv2.COLOR_'+src.upper()+'2HSV)')
return image_HSV
def value(image,src='RGB'):
verify_image(image)
if(is_list(image)):
image_value=[]
image_list=image
for img in image_list:
image_value.append(hsv(img,src)[:,:,2])
else:
image_value= hsv(image,src)[:,:,2]
return image_value
###################### BGR #############################
def bgr(image, src='RGB'):
verify_image(image)
if(is_list(image)):
image_BGR=[]
image_list=image
for img in image_list:
eval('image_BGR.append(cv2.cvtColor(img,cv2.COLOR_'+src.upper()+'2BGR))')
else:
image_BGR= eval('cv2.cvtColor(image,cv2.COLOR_'+src.upper()+'2BGR)')
return image_BGR
###################### RGB #############################
def rgb(image, src='BGR'):
verify_image(image)
if(is_list(image)):
image_RGB=[]
image_list=image
for img in image_list:
eval('image_RGB.append(cv2.cvtColor(img,cv2.COLOR_'+src.upper()+'2RGB))')
else:
image_RGB= eval('cv2.cvtColor(image,cv2.COLOR_'+src.upper()+'2RGB)')
return image_RGB
def red(image,src='BGR'):
verify_image(image)
if(is_list(image)):
image_red=[]
image_list=image
for img in image_list:
i= eval('cv2.cvtColor(img,cv2.COLOR_'+src.upper()+'2RGB)')
image_red.append(i[:,:,0])
else:
image_red= eval('cv2.cvtColor(image,cv2.COLOR_'+src.upper()+'2RGB)[:,:,0]')
return image_red
def green(image,src='BGR'):
verify_image(image)
if(is_list(image)):
image_green=[]
image_list=image
for img in image_list:
i= eval('cv2.cvtColor(img,cv2.COLOR_'+src.upper()+'2RGB)')
image_green.append(i[:,:,1])
else:
image_green= eval('cv2.cvtColor(image,cv2.COLOR_'+src.upper()+'2RGB)[:,:,1]')
return image_green
def blue(image,src='BGR'):
verify_image(image)
if(is_list(image)):
image_blue=[]
image_list=image
for img in image_list:
i=eval('cv2.cvtColor(img,cv2.COLOR_'+src.upper()+'2RGB)')
image_blue.append(i[:,:,2])
else:
image_blue= eval('cv2.cvtColor(image,cv2.COLOR_'+src.upper()+'2RGB)[:,:,2]')
return image_blue
err_not_np_img= "not a numpy array or list of numpy array"
err_img_arr_empty="Image array is empty"
err_row_zero="No. of rows can't be <=0"
err_column_zero="No. of columns can't be <=0"
err_invalid_size="Not a valid size tuple (x,y)"
err_caption_array_count="Caption array length doesn't matches the image array length"
def is_numpy_array(x):
return isinstance(x, np.ndarray)
def is_tuple(x):
return type(x) is tuple
def is_list(x):
return type(x) is list
def is_numeric(x):
return type(x) is int
def is_numeric_list_or_tuple(x):
for i in x:
if not is_numeric(i):
return False
return True
err_brightness_coeff="brightness coeff can only be between 0.0 to 1.0"
err_darkness_coeff="darkness coeff can only be between 0.0 to 1.0"
def change_light(image, coeff):
image_HLS = cv2.cvtColor(image,cv2.COLOR_RGB2HLS) ## Conversion to HLS
image_HLS = np.array(image_HLS, dtype = np.float64)
image_HLS[:,:,1] = image_HLS[:,:,1]*coeff ## scale pixel values up or down for channel 1(Lightness)
if(coeff>1):
image_HLS[:,:,1][image_HLS[:,:,1]>255] = 255 ##Sets all values above 255 to 255
else:
image_HLS[:,:,1][image_HLS[:,:,1]<0]=0
image_HLS = np.array(image_HLS, dtype = np.uint8)
image_RGB = cv2.cvtColor(image_HLS,cv2.COLOR_HLS2RGB) ## Conversion to RGB
return image_RGB
def verify_image(image):
if is_numpy_array(image):
pass
elif(is_list(image)):
image_list=image
for img in image_list:
if not is_numpy_array(img):
raise Exception(err_not_np_img)
else:
raise Exception(err_not_np_img)
def brighten(image, brightness_coeff=-1): ##function to brighten the image
verify_image(image)
if(brightness_coeff!=-1):
if(brightness_coeff<0.0 or brightness_coeff>1.0):
raise Exception(err_brightness_coeff)
if(is_list(image)):
image_RGB=[]
image_list=image
for img in image_list:
if(brightness_coeff==-1):
brightness_coeff_t=1+ random.uniform(0,1) ## coeff between 1.0 and 1.5
else:
brightness_coeff_t=1+ brightness_coeff ## coeff between 1.0 and 2.0
image_RGB.append(change_light(img,brightness_coeff_t))
else:
if(brightness_coeff==-1):
brightness_coeff_t=1+ random.uniform(0,1) ## coeff between 1.0 and 1.5
else:
brightness_coeff_t=1+ brightness_coeff ## coeff between 1.0 and 2.0
image_RGB= change_light(image,brightness_coeff_t)
return image_RGB
def darken(image, darkness_coeff=-1): ##function to darken the image
verify_image(image)
if(darkness_coeff!=-1):
if(darkness_coeff<0.0 or darkness_coeff>1.0):
raise Exception(err_darkness_coeff)
if(is_list(image)):
image_RGB=[]
image_list=image
for img in image_list:
if(darkness_coeff==-1):
darkness_coeff_t=1- random.uniform(0,1)
else:
darkness_coeff_t=1- darkness_coeff
image_RGB.append(change_light(img,darkness_coeff_t))
else:
if(darkness_coeff==-1):
darkness_coeff_t=1- random.uniform(0,1)
else:
darkness_coeff_t=1- darkness_coeff
image_RGB= change_light(image,darkness_coeff_t)
return image_RGB
def random_brightness(image):
verify_image(image)
if(is_list(image)):
image_RGB=[]
image_list=image
for img in image_list:
random_brightness_coefficient = 2* np.random.uniform(0,1) ## generates value between 0.0 and 2.0
image_RGB.append(change_light(img,random_brightness_coefficient))
else:
random_brightness_coefficient = 2* np.random.uniform(0,1) ## generates value between 0.0 and 2.0
image_RGB= change_light(image,random_brightness_coefficient)
return image_RGB
err_shadow_count="only 1-10 shadows can be introduced in an image"
err_invalid_rectangular_roi="Rectangular ROI dimensions are not valid"
err_shadow_dimension="polygons with dim<3 dont exist and >10 take time to plot"
def generate_shadow_coordinates(imshape, no_of_shadows, rectangular_roi, shadow_dimension):
vertices_list=[]
x1=rectangular_roi[0]
y1=rectangular_roi[1]
x2=rectangular_roi[2]
y2=rectangular_roi[3]
for index in range(no_of_shadows):
vertex=[]
for dimensions in range(shadow_dimension): ## Dimensionality of the shadow polygon
vertex.append((random.randint(x1, x2),random.randint(y1, y2)))
vertices = np.array([vertex], dtype=np.int32) ## single shadow vertices
vertices_list.append(vertices)
return vertices_list ## List of shadow vertices
def shadow_process(image,no_of_shadows,x1,y1,x2,y2, shadow_dimension):
image_HLS = cv2.cvtColor(image,cv2.COLOR_RGB2HLS) ## Conversion to HLS
mask = np.zeros_like(image)
imshape = image.shape
vertices_list= generate_shadow_coordinates(imshape, no_of_shadows,(x1,y1,x2,y2), shadow_dimension) #3 getting list of shadow vertices
for vertices in vertices_list:
cv2.fillPoly(mask, vertices, 255) ## adding all shadow polygons on empty mask, single 255 denotes only red channel
image_HLS[:,:,1][mask[:,:,0]==255] = image_HLS[:,:,1][mask[:,:,0]==255]*0.5 ## if red channel is hot, image's "Lightness" channel's brightness is lowered
image_RGB = cv2.cvtColor(image_HLS,cv2.COLOR_HLS2RGB) ## Conversion to RGB
return image_RGB
def add_shadow(image,no_of_shadows=1,rectangular_roi=(-1,-1,-1,-1), shadow_dimension=5):## ROI:(top-left x1,y1, bottom-right x2,y2), shadow_dimension=no. of sides of polygon generated
verify_image(image)
if not(is_numeric(no_of_shadows) and no_of_shadows>=1 and no_of_shadows<=10):
raise Exception(err_shadow_count)
if not(is_numeric(shadow_dimension) and shadow_dimension>=3 and shadow_dimension<=10):
raise Exception(err_shadow_dimension)
if is_tuple(rectangular_roi) and is_numeric_list_or_tuple(rectangular_roi) and len(rectangular_roi)==4:
x1=rectangular_roi[0]
y1=rectangular_roi[1]
x2=rectangular_roi[2]
y2=rectangular_roi[3]
else:
raise Exception(err_invalid_rectangular_roi)
if rectangular_roi==(-1,-1,-1,-1):
x1=0
if(is_numpy_array(image)):
y1=image.shape[0]//2
x2=image.shape[1]
y2=image.shape[0]
else:
y1=image[0].shape[0]//2
x2=image[0].shape[1]
y2=image[0].shape[0]
elif x1==-1 or y1==-1 or x2==-1 or y2==-1 or x2<=x1 or y2<=y1:
raise Exception(err_invalid_rectangular_roi)
if(is_list(image)):
image_RGB=[]
image_list=image
for img in image_list:
output=shadow_process(img,no_of_shadows,x1,y1,x2,y2, shadow_dimension)
image_RGB.append(output)
else:
output=shadow_process(image,no_of_shadows,x1,y1,x2,y2, shadow_dimension)
image_RGB = output
return image_RGB
err_snow_coeff="Snow coeff can only be between 0 and 1"
def snow_process(image,snow_coeff):
image_HLS = cv2.cvtColor(image,cv2.COLOR_RGB2HLS) ## Conversion to HLS
image_HLS = np.array(image_HLS, dtype = np.float64)
brightness_coefficient = 2.5
imshape = image.shape
snow_point=snow_coeff ## increase this for more snow
image_HLS[:,:,1][image_HLS[:,:,1]<snow_point] = image_HLS[:,:,1][image_HLS[:,:,1]<snow_point]*brightness_coefficient ## scale pixel values up for channel 1(Lightness)
image_HLS[:,:,1][image_HLS[:,:,1]>255] = 255 ##Sets all values above 255 to 255
image_HLS = np.array(image_HLS, dtype = np.uint8)
image_RGB = cv2.cvtColor(image_HLS,cv2.COLOR_HLS2RGB) ## Conversion to RGB
return image_RGB
def add_snow(image, snow_coeff=-1):
verify_image(image)
if(snow_coeff!=-1):
if(snow_coeff<0.0 or snow_coeff>1.0):
raise Exception(err_snow_coeff)
else:
snow_coeff=random.uniform(0,1)
snow_coeff*=255/2
snow_coeff+=255/3
if(is_list(image)):
image_RGB=[]
image_list=image
for img in image_list:
output= snow_process(img,snow_coeff)
image_RGB.append(output)
else:
output= snow_process(image,snow_coeff)
image_RGB=output
return image_RGB
err_rain_slant="Numeric value between -20 and 20 is allowed"
err_rain_width="Width value between 1 and 5 is allowed"
err_rain_length="Length value between 0 and 100 is allowed"
def generate_random_lines(imshape,slant,drop_length,rain_type):
drops=[]
area=imshape[0]*imshape[1]
no_of_drops=area//600
if rain_type.lower()=='drizzle':
no_of_drops=area//770
drop_length=10
elif rain_type.lower()=='heavy':
drop_length=30
elif rain_type.lower()=='torrential':
no_of_drops=area//500
drop_length=60
for i in range(no_of_drops): ## If You want heavy rain, try increasing this
if slant<0:
x= np.random.randint(slant,imshape[1])
else:
x= np.random.randint(0,imshape[1]-slant)
y= np.random.randint(0,imshape[0]-drop_length)
drops.append((x,y))
return drops,drop_length
def rain_process(image,slant,drop_length,drop_color,drop_width,rain_drops):
imshape = image.shape
image_t= image.copy()
for rain_drop in rain_drops:
cv2.line(image_t,(rain_drop[0],rain_drop[1]),(rain_drop[0]+slant,rain_drop[1]+drop_length),drop_color,drop_width)
image= cv2.blur(image_t,(7,7)) ## rainy view are blurry
brightness_coefficient = 0.7 ## rainy days are usually shady
image_HLS = hls(image) ## Conversion to HLS
image_HLS[:,:,1] = image_HLS[:,:,1]*brightness_coefficient ## scale pixel values down for channel 1(Lightness)
image_RGB= rgb(image_HLS,'hls') ## Conversion to RGB
return image_RGB
##rain_type='drizzle','heavy','torrential'
def add_rain(image,slant=-1,drop_length=20,drop_width=1,drop_color=(200,200,200),rain_type='None'): ## (200,200,200) a shade of gray
verify_image(image)
slant_extreme=slant
if not(is_numeric(slant_extreme) and (slant_extreme>=-20 and slant_extreme<=20)or slant_extreme==-1):
raise Exception(err_rain_slant)
if not(is_numeric(drop_width) and drop_width>=1 and drop_width<=5):
raise Exception(err_rain_width)
if not(is_numeric(drop_length) and drop_length>=0 and drop_length<=100):
raise Exception(err_rain_length)
if(is_list(image)):
image_RGB=[]
image_list=image
imshape = image[0].shape
if slant_extreme==-1:
slant= np.random.randint(-10,10) ##generate random slant if no slant value is given
rain_drops,drop_length= generate_random_lines(imshape,slant,drop_length,rain_type)
for img in image_list:
output= rain_process(img,slant_extreme,drop_length,drop_color,drop_width,rain_drops)
image_RGB.append(output)
else:
imshape = image.shape
if slant_extreme==-1:
slant= np.random.randint(-10,10) ##generate random slant if no slant value is given
rain_drops,drop_length= generate_random_lines(imshape,slant,drop_length,rain_type)
output= rain_process(image,slant_extreme,drop_length,drop_color,drop_width,rain_drops)
image_RGB=output
return image_RGB
err_fog_coeff="Fog coeff can only be between 0 and 1"
def add_blur(image, x,y,hw,fog_coeff):
overlay= image.copy()
output= image.copy()
alpha= 0.08*fog_coeff
rad= hw//2
point=(x+hw//2, y+hw//2)
cv2.circle(overlay,point, int(rad), (255,255,255), -1)
cv2.addWeighted(overlay, alpha, output, 1 -alpha ,0, output)
return output
def generate_random_blur_coordinates(imshape,hw):
blur_points=[]
midx= imshape[1]//2-2*hw
midy= imshape[0]//2-hw
index=1
while(midx>-hw or midy>-hw):
for i in range(hw//10*index):
x= np.random.randint(midx,imshape[1]-midx-hw)
y= np.random.randint(midy,imshape[0]-midy-hw)
blur_points.append((x,y))
midx-=3*hw*imshape[1]//sum(imshape)
midy-=3*hw*imshape[0]//sum(imshape)
index+=1
return blur_points
def add_fog(image, fog_coeff=-1):
verify_image(image)
if(fog_coeff!=-1):
if(fog_coeff<0.0 or fog_coeff>1.0):
raise Exception(err_fog_coeff)
if(is_list(image)):
image_RGB=[]
image_list=image
imshape = image[0].shape
for img in image_list:
if fog_coeff==-1:
fog_coeff_t=random.uniform(0.3,1)
else:
fog_coeff_t=fog_coeff
hw=int(imshape[1]//3*fog_coeff_t)
haze_list= generate_random_blur_coordinates(imshape,hw)
for haze_points in haze_list:
img= add_blur(img, haze_points[0],haze_points[1], hw,fog_coeff_t) ## adding all shadow polygons on empty mask, single 255 denotes only red channel
img = cv2.blur(img ,(hw//10,hw//10))
image_RGB.append(img)
else:
imshape = image.shape
if fog_coeff==-1:
fog_coeff_t=random.uniform(0.3,1)
else:
fog_coeff_t=fog_coeff
hw=int(imshape[1]//3*fog_coeff_t)
haze_list= generate_random_blur_coordinates(imshape,hw)
for haze_points in haze_list:
image= add_blur(image, haze_points[0],haze_points[1], hw,fog_coeff_t)
image = cv2.blur(image ,(hw//10,hw//10))
image_RGB = image
return image_RGB
def generate_gravel_patch(rectangular_roi):
x1=rectangular_roi[0]
y1=rectangular_roi[1]
x2=rectangular_roi[2]
y2=rectangular_roi[3]
gravels=[]
area= abs((x2-x1)*(y2-y1))
for i in range((int)(area//10)):
x= np.random.randint(x1,x2)
y= np.random.randint(y1,y2)
gravels.append((x,y))
return gravels
def gravel_process(image,x1,x2,y1,y2,no_of_patches):
x=image.shape[1]
y=image.shape[0]
rectangular_roi_default=[]
for i in range(no_of_patches):
xx1=random.randint(x1, x2)
xx2=random.randint(x1, xx1)
yy1=random.randint(y1, y2)
yy2=random.randint(y1, yy1)
rectangular_roi_default.append((xx2,yy2,min(xx1,xx2+200),min(yy1,yy2+30)))
img_hls=hls(image)
for roi in rectangular_roi_default:
gravels= generate_gravel_patch(roi)
for gravel in gravels:
x=gravel[0]
y=gravel[1]
r=random.randint(1, 4)
r1=random.randint(0, 255)
img_hls[max(y-r,0):min(y+r,y),max(x-r,0):min(x+r,x),1]=r1
image_RGB= rgb(img_hls,'hls')
return image_RGB
def add_gravel(image,rectangular_roi=(-1,-1,-1,-1), no_of_patches=8):
verify_image(image)
if is_tuple(rectangular_roi) and is_numeric_list_or_tuple(rectangular_roi) and len(rectangular_roi)==4:
x1=rectangular_roi[0]
y1=rectangular_roi[1]
x2=rectangular_roi[2]
y2=rectangular_roi[3]
else:
raise Exception(err_invalid_rectangular_roi)
if rectangular_roi==(-1,-1,-1,-1):
if(is_numpy_array(image)):
x1=0
y1=int(image.shape[0]*3/4)
x2=image.shape[1]
y2=image.shape[0]
else:
x1=0
y1=int(image[0].shape[0]*3/4)
x2=image[0].shape[1]
y2=image[0].shape[0]
elif x1==-1 or y1==-1 or x2==-1 or y2==-1 or x2<=x1 or y2<=y1:
raise Exception(err_invalid_rectangular_roi)
color=[0,255]
if(is_list(image)):
image_RGB=[]
image_list=image
for img in image_list:
output= gravel_process(img,x1,x2,y1,y2,no_of_patches)
image_RGB.append(output)
else:
output= gravel_process(image,x1,x2,y1,y2,no_of_patches)
image_RGB= output
return image_RGB
err_flare_circle_count="Numeric value between 0 and 20 is allowed"
def flare_source(image, point,radius,src_color):
overlay= image.copy()
output= image.copy()
num_times=radius//10
alpha= np.linspace(0.0,1,num= num_times)
rad= np.linspace(1,radius, num=num_times)
for i in range(num_times):
cv2.circle(overlay,point, int(rad[i]), src_color, -1)
alp=alpha[num_times-i-1]*alpha[num_times-i-1]*alpha[num_times-i-1]
cv2.addWeighted(overlay, alp, output, 1 -alp ,0, output)
return output
def add_sun_flare_line(flare_center,angle,imshape):
x=[]
y=[]
i=0
for rand_x in range(0,imshape[1],10):
rand_y= math.tan(angle)*(rand_x-flare_center[0])+flare_center[1]
x.append(rand_x)
y.append(2*flare_center[1]-rand_y)
return x,y
def add_sun_process(image, no_of_flare_circles,flare_center,src_radius,x,y,src_color):
overlay= image.copy()
output= image.copy()
imshape=image.shape
for i in range(no_of_flare_circles):
alpha=random.uniform(0.05,0.2)
r=random.randint(0, len(x)-1)
rad=random.randint(1, imshape[0]//100-2)
cv2.circle(overlay,(int(x[r]),int(y[r])), rad*rad*rad, (random.randint(max(src_color[0]-50,0), src_color[0]),random.randint(max(src_color[1]-50,0), src_color[1]),random.randint(max(src_color[2]-50,0), src_color[2])), -1)
cv2.addWeighted(overlay, alpha, output, 1 - alpha,0, output)
output= flare_source(output,(int(flare_center[0]),int(flare_center[1])),src_radius,src_color)
return output
def add_sun_flare(image,flare_center=-1, angle=-1, no_of_flare_circles=8,src_radius=400, src_color=(255,255,255)):
verify_image(image)
if(angle!=-1):
angle=angle%(2*math.pi)
if not(no_of_flare_circles>=0 and no_of_flare_circles<=20):
raise Exception(err_flare_circle_count)
if(is_list(image)):
image_RGB=[]
image_list=image
imshape=image_list[0].shape
for img in image_list:
if(angle==-1):
angle_t=random.uniform(0,2*math.pi)
if angle_t==math.pi/2:
angle_t=0
else:
angle_t=angle
if flare_center==-1:
flare_center_t=(random.randint(0,imshape[1]),random.randint(0,imshape[0]//2))
else:
flare_center_t=flare_center
x,y= add_sun_flare_line(flare_center_t,angle_t,imshape)
output= add_sun_process(img, no_of_flare_circles,flare_center_t,src_radius,x,y,src_color)
image_RGB.append(output)
else:
imshape=image.shape
if(angle==-1):
angle_t=random.uniform(0,2*math.pi)
if angle_t==math.pi/2:
angle_t=0
else:
angle_t=angle
if flare_center==-1:
flare_center_t=(random.randint(0,imshape[1]),random.randint(0,imshape[0]//2))
else:
flare_center_t=flare_center
x,y= add_sun_flare_line(flare_center_t,angle_t,imshape)
output= add_sun_process(image, no_of_flare_circles,flare_center_t,src_radius,x,y,src_color)
image_RGB = output
return image_RGB
err_speed_coeff="Speed coeff can only be between 0 and 1"
def apply_motion_blur(image,count):
image_t=image.copy()
imshape=image_t.shape
size=15
kernel_motion_blur = np.zeros((size, size))
kernel_motion_blur[int((size-1)/2), :] = np.ones(size)
kernel_motion_blur = kernel_motion_blur / size
i= imshape[1]*3//4 - 10*count
while(i<=imshape[1]):
image_t[:,i:,:] = cv2.filter2D(image_t[:,i:,:], -1, kernel_motion_blur)
image_t[:,:imshape[1]-i,:] = cv2.filter2D(image_t[:,:imshape[1]-i,:], -1, kernel_motion_blur)
i+=imshape[1]//25-count
count+=1
image_RGB=image_t
return image_RGB
def add_speed(image, speed_coeff=-1):
verify_image(image)
if(speed_coeff !=-1):
if(speed_coeff<0.0 or speed_coeff>1.0):
raise Exception(err_speed_coeff)
if(is_list(image)):
image_RGB=[]
image_list=image
for img in image_list:
if(speed_coeff==-1):
count_t=int(15*random.uniform(0,1))
else:
count_t=int(15*speed_coeff)
img=apply_motion_blur(img,count_t)
image_RGB.append(img)
else:
if(speed_coeff==-1):
count_t=int(15*random.uniform(0,1))
else:
count_t=int(15*speed_coeff)
image_RGB= apply_motion_blur(image,count_t)
return image_RGB
def autumn_process(image):
image_t=image.copy()
imshape=image_t.shape
image_hls= hls(image_t)
step=8
aut_colors=[1,5,9,11]
col= aut_colors[random.randint(0,3)]
for i in range(0,imshape[1],step):
for j in range(0,imshape[0],step):
avg=np.average(image_hls[j:j+step,i:i+step,0])
# print(avg)
if(avg >20 and avg< 100 and np.average(image[j:j+step,i:i+step,1])<100):
image_hls[j:j+step,i:i+step,0]= col
image_hls[j:j+step,i:i+step,2]=255
return rgb(image_hls,'hls')
def add_autumn(image):
verify_image(image)
if(is_list(image)):
image_RGB=[]
image_list=image
for img in image_list:
img=autumn_process(img)
image_RGB.append(img)
else:
image=autumn_process(image)
image_RGB= image
return image_RGB
def fliph(image): ##function to flip the image on horizontal axis
verify_image(image)
if(is_list(image)):
image_RGB=[]
image_list=image
for img in image_list:
image_RGB.append(cv2.flip(img,0))
else:
image_RGB= cv2.flip(image,0)
return image_RGB
def flipv(image): ##function to flip the image on vertical axis
verify_image(image)
if(is_list(image)):
image_RGB=[]
image_list=image
for img in image_list:
image_RGB.append(cv2.flip(img,1))
else:
image_RGB= cv2.flip(image,1)
return image_RGB
def random_flip(image): ##function to flip the image on horizontal axis
verify_image(image)
if(is_list(image)):
image_RGB=[]
image_list=image
for img in image_list:
p= random.uniform(0,1)
if(p>0.5):
image_RGB.append(cv2.flip(img,0))
else:
image_RGB.append(cv2.flip(img,1))
else:
p= random.uniform(0,1)
if(p>0.5):
image_RGB=cv2.flip(image,0)
else:
image_RGB=cv2.flip(image,1)
return image_RGB
def manhole_process(image,center,height,width,src_color=(0,0,0)):
overlay= image.copy()
output= image.copy()
# cv2.ellipse(overlay, center =center,box=None,color =src_color)
cv2.ellipse(overlay, center, (width,height), 0, 0, 360, src_color, -1)
# cv2.circle(overlay, center, radius, src_color, -1)
alp=1
cv2.addWeighted(overlay, alp, output, 1 -alp ,0, output)
return output
err_invalid_center_manhole="center should be in the format (x,y)"
err_invalid_height_width_manhole="height and width should be positive integers."
def add_manhole(image,center=-1,color=(120,120,120),height=1,width=1, type='closed'): ##function to flip the image on horizontal axis
verify_image(image)
if(center!=-1):
if not(is_tuple(center) and is_numeric_list_or_tuple(center) and len(center)==2):
raise Exception(err_invalid_center_manhole)
if not (is_numeric(height) and is_numeric(width) and height>0 and width>0):
raise Exception(err_invalid_height_width_manhole)
if color==(120,120,120):
if type=='closed':
color=(67,70,75)
elif type=='open':
color=(0,0,0)
if(is_list(image)):
image_RGB=[]
image_list=image
for img in image_list:
height_t=height
width_t=width
center_t=center
if height==1:
height_t=img.shape[0]//25
if width==1:
width_t=int(img.shape[0]*3//25)
if center==-1:
center_t= (img.shape[0]-100, img.shape[1]//2)
image_RGB.append(manhole_process(img,center_t,height_t,width_t,color))
else:
height_t=height
width_t=width
center_t=center
if height==1:
height_t=image.shape[0]//25
if width==1:
width_t=int(image.shape[0]*3//25)
if center==-1:
center= (image.shape[0]-100, image.shape[1]//2)
image_RGB= manhole_process(image,center_t,height_t,width_t,color)
return image_RGB
def exposure_process(image):
image= np.copy(image)
img_yuv = cv2.cvtColor(image, cv2.COLOR_BGR2YUV)
clahe = cv2.createCLAHE(clipLimit=2.0, tileGridSize=(4,4))
ones= np.ones(img_yuv[:,:,0].shape)
ones[img_yuv[:,:,0]>150]= 0.85
img_yuv[:,:,0]= img_yuv[:,:,0]*ones
img_yuv[:,:,0] = clahe.apply(img_yuv[:,:,0])
img_yuv[:,:,0] = cv2.equalizeHist(img_yuv[:,:,0])
img_yuv[:,:,0] = clahe.apply(img_yuv[:,:,0])
image_res = cv2.cvtColor(img_yuv, cv2.COLOR_YUV2BGR)
image_res= cv2.fastNlMeansDenoisingColored(image_res,None,3,3,7,21)
return image_res
def correct_exposure(image):
verify_image(image)
if(is_list(image)):
image_RGB=[]
image_list=image
for img in image_list:
image_RGB.append(exposure_process(img))
else:
image_RGB= exposure_process(image)
return image_RGB
err_aug_type='wrong augmentation function is defined'
err_aug_list_type='aug_types should be a list of string function names'
err_aug_volume='volume type can only be "same" or "expand"'
def augment_random(image, aug_types="", volume='expand' ):
aug_types_all=["random_brightness","add_shadow","add_snow","add_rain","add_fog","add_gravel","add_sun_flare","add_speed","add_autumn","random_flip","add_manhole"]
if aug_types=="":
aug_types=aug_types_all
output=[]
if not(is_list(aug_types)):
raise Exception(err_aug_list_type)
if volume=='expand':
for aug_type in aug_types:
if not(aug_type in aug_types_all):
raise Exception(err_aug_type)
command=aug_type+'(image)'
result=eval(command)
if(is_list(result)):
output+=result
else:
output.append(result)
elif volume=='same':
verify_image(image)
for aug_type in aug_types:
if not(aug_type in aug_types_all):
raise Exception(err_aug_type)
if(is_list(image)):
image_list=image
for img in image_list:
selected_aug=aug_types[random.randint(0,len(aug_types)-1)]
command=selected_aug+'(img)'
output.append(eval(command))
else:
selected_aug=aug_types[random.randint(0,len(aug_types)-1)]
command=selected_aug+'(image)'
output=eval(command)
else:
raise Exception(err_aug_volume)
return output |