File size: 8,859 Bytes
3ef1661
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
import os
import json
import torch
import torchvision.transforms as transforms
import os.path
import numpy as np
import cv2
from torch.utils.data import Dataset
import random
from .__base_dataset__ import BaseDataset


class KITTIDataset(BaseDataset):
    def __init__(self, cfg, phase, **kwargs):
        super(KITTIDataset, self).__init__(
            cfg=cfg,
            phase=phase,
            **kwargs)
        self.metric_scale = cfg.metric_scale
    
    def get_data_for_trainval(self, idx: int):
        anno = self.annotations['files'][idx]
        meta_data = self.load_meta_data(anno)
        
        data_path = self.load_data_path(meta_data)
        data_batch = self.load_batch(meta_data, data_path)
        # if data_path['sem_path'] is not None:
        #     print(self.data_name)

        curr_rgb, curr_depth, curr_normal, curr_sem, curr_cam_model = data_batch['curr_rgb'], data_batch['curr_depth'], data_batch['curr_normal'], data_batch['curr_sem'], data_batch['curr_cam_model']
        #curr_stereo_depth = data_batch['curr_stereo_depth']
        
        th = 352 # target size for bottom cropping, a common practice for kitti training
        tw = 1216

        ch = curr_rgb.shape[0]
        cw = curr_rgb.shape[1]

        h_start = ch - th
        w_start = (cw - tw) // 2
        w_end = w_start + tw

        curr_intrinsic = meta_data['cam_in']

        curr_rgb = curr_rgb[h_start:, w_start:w_end, :]
        curr_depth = curr_depth[h_start:, w_start:w_end]

        curr_normal = curr_normal[h_start:, w_start:w_end, :]
        curr_sem = curr_sem[h_start:, w_start:w_end]

        curr_intrinsic[2] = curr_intrinsic[2] - w_start # cw
        curr_intrinsic[3] = curr_intrinsic[3] - h_start # ch

        # A patch for stereo depth dataloader (no need to modify specific datasets)
        if 'curr_stereo_depth' in data_batch.keys():
            curr_stereo_depth = data_batch['curr_stereo_depth']
        else:
            curr_stereo_depth = self.load_stereo_depth_label(None, H=curr_rgb.shape[0], W=curr_rgb.shape[1]) 


        # data augmentation
        transform_paras = dict(random_crop_size = self.random_crop_size) # dict() 
        assert curr_rgb.shape[:2] == curr_depth.shape == curr_normal.shape[:2] == curr_sem.shape
        rgbs, depths, intrinsics, cam_models, normals, other_labels, transform_paras = self.img_transforms(
                                                                   images=[curr_rgb, ], 
                                                                   labels=[curr_depth, ], 
                                                                   intrinsics=[curr_intrinsic,], 
                                                                   cam_models=[curr_cam_model, ],
                                                                   normals = [curr_normal, ],
                                                                   other_labels=[curr_sem, curr_stereo_depth],
                                                                   transform_paras=transform_paras)
        # process sky masks
        sem_mask = other_labels[0].int()
        # clip depth map 
        depth_out = self.normalize_depth(depths[0])
        # set the depth of sky region to the invalid
        depth_out[sem_mask==142] = -1 # self.depth_normalize[1] - 1e-6
        # get inverse depth
        inv_depth = self.depth2invdepth(depth_out, sem_mask==142)
        filename = os.path.basename(meta_data['rgb'])[:-4] + '.jpg'
        curr_intrinsic_mat = self.intrinsics_list2mat(intrinsics[0])
        cam_models_stacks = [
            torch.nn.functional.interpolate(cam_models[0][None, :, :, :], size=(cam_models[0].shape[1]//i, cam_models[0].shape[2]//i), mode='bilinear', align_corners=False).squeeze()
            for i in [2, 4, 8, 16, 32] 
            ]

        # stereo_depth 
        stereo_depth_pre_trans = other_labels[1] * (other_labels[1] > 0.3) * (other_labels[1] < 200)
        stereo_depth = stereo_depth_pre_trans * transform_paras['label_scale_factor']
        stereo_depth = self.normalize_depth(stereo_depth)

        pad = transform_paras['pad'] if 'pad' in transform_paras else [0,0,0,0]        
        data = dict(input=rgbs[0],
                    target=depth_out,
                    intrinsic=curr_intrinsic_mat,
                    filename=filename,
                    dataset=self.data_name,
                    cam_model=cam_models_stacks,
                    pad=torch.tensor(pad),
                    data_type=[self.data_type, ],
                    sem_mask=sem_mask.int(),
                    stereo_depth= stereo_depth,
                    normal=normals[0],
                    inv_depth=inv_depth,
                    scale=transform_paras['label_scale_factor'])
        return data   


    def get_data_for_test(self, idx: int):
        anno = self.annotations['files'][idx]
        meta_data = self.load_meta_data(anno)
        curr_rgb_path = os.path.join(self.data_root, meta_data['rgb'])
        curr_depth_path = os.path.join(self.depth_root, meta_data['depth'])
        # load data
        ori_curr_intrinsic = meta_data['cam_in']
        curr_rgb, curr_depth = self.load_rgb_depth(curr_rgb_path, curr_depth_path)
        # crop rgb/depth
        curr_rgb = curr_rgb[:, 43: 1197, :]
        curr_depth = curr_depth[:, 43: 1197]
        
        ori_h, ori_w, _ = curr_rgb.shape
        # create camera model
        curr_cam_model = self.create_cam_model(curr_rgb.shape[0], curr_rgb.shape[1], ori_curr_intrinsic)
        # load tmpl rgb info
        # tmpl_annos = self.load_tmpl_image_pose(curr_rgb, meta_data)
        # tmpl_rgbs = tmpl_annos['tmpl_rgb_list'] # list of reference rgbs

        # get crop size
        transform_paras = dict()
        rgbs, depths, intrinsics, cam_models, _, other_labels, transform_paras = self.img_transforms(
                                                                   images=[curr_rgb,],  #+ tmpl_rgbs, 
                                                                   labels=[curr_depth, ], 
                                                                   intrinsics=[ori_curr_intrinsic, ], # * (len(tmpl_rgbs) + 1), 
                                                                   cam_models=[curr_cam_model, ],
                                                                   transform_paras=transform_paras)
        
        # depth in original size and orignial metric***
        depth_out = self.clip_depth(curr_depth) * self.depth_range[1] # self.clip_depth(depths[0]) #

        filename = os.path.basename(meta_data['rgb'])
        curr_intrinsic_mat = self.intrinsics_list2mat(intrinsics[0])

        pad = transform_paras['pad'] if 'pad' in transform_paras else [0,0,0,0]
        scale_ratio = transform_paras['label_scale_factor'] if 'label_scale_factor' in transform_paras else 1.0
        cam_models_stacks = [
            torch.nn.functional.interpolate(cam_models[0][None, :, :, :], size=(cam_models[0].shape[1]//i, cam_models[0].shape[2]//i), mode='bilinear', align_corners=False).squeeze()
            for i in [2, 4, 8, 16, 32] 
            ]    
        raw_rgb = torch.from_numpy(curr_rgb)
        # rel_pose = torch.from_numpy(tmpl_annos['tmpl_pose_list'][0])

        data = dict(input=rgbs[0],
                    target=depth_out,
                    intrinsic=curr_intrinsic_mat,
                    filename=filename,
                    dataset=self.data_name,
                    cam_model=cam_models_stacks,
                    # ref_input=rgbs[1:],
                    # tmpl_flg=tmpl_annos['w_tmpl'],
                    pad=pad,
                    scale=scale_ratio,
                    raw_rgb=raw_rgb,
                    normal = np.zeros_like(curr_rgb.transpose((2,0,1))), 
                    # rel_pose=rel_pose,
                    )
        return data
    
    def process_depth(self, depth, rgb):
        new_depth = np.zeros_like(depth)
        H, W = depth.shape
        crop_h_up = int(0.3324324 * H)
        crop_h_down = int(0.91351351 * H)
        crop_w_left = int(0.0359477 * W)
        crop_w_right = int(0.96405229 * W)
        
        new_depth[crop_h_up:crop_h_down, crop_w_left: crop_w_right] = depth[crop_h_up:crop_h_down, crop_w_left: crop_w_right]
        new_depth[new_depth>65500] = 0
        new_depth /= self.metric_scale
        #print('image size', new_depth.shape, crop_h_up, crop_h_down, crop_w_left, crop_w_right)
        #self.logger.info('image size, {new_depth.shape}, {crop_h_up}, {crop_h_down}, {crop_w_left}, {crop_w_right}')
        return new_depth



if __name__ == '__main__':
    from mmcv.utils import Config 
    cfg = Config.fromfile('mono/configs/Apolloscape_DDAD/convnext_base.cascade.1m.sgd.mae.py')
    dataset_i = KITTIDataset(cfg['Apolloscape'], 'train', **cfg.data_basic)
    print(dataset_i)