File size: 1,452 Bytes
564b8f7 3f9bed2 564b8f7 3f9bed2 564b8f7 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 |
---
pipeline_tag: text-generation
inference: true
widget:
- text: 'Hello!'
example_title: Hello world
group: Python
library_name: transformers
---
# yujiepan/opt-tiny-2layers-random
This model is **randomly initialized**, using the config from [https://huggingface.co/facebook/opt-30b] but the size is smaller.
Note the model is in float32.
```python
config.ffn_dim = 32
config.hidden_size = 8
config.num_attention_heads = 2
config.num_hidden_layers = 2
config.word_embed_proj_dim = 8
```
Codes for this model:
```python
import torch
import transformers
import os
from optimum.intel.openvino import OVModelForCausalLM
save_path = '/tmp/yujiepan/opt-tiny-2layers-random'
repo_id = 'yujiepan/opt-tiny-2layer-random'
config = transformers.AutoConfig.from_pretrained('facebook/opt-30b')
config.ffn_dim = 32
config.hidden_size = 8
config.num_attention_heads = 2
config.num_hidden_layers = 2
config.word_embed_proj_dim = 8
model = transformers.AutoModelForCausalLM.from_config(config, torch_dtype=torch.float32)
model.save_pretrained(save_path)
tokenizer = transformers.AutoTokenizer.from_pretrained('facebook/opt-30b')
tokenizer.save_pretrained(save_path)
ovmodel = OVModelForCausalLM.from_pretrained(save_path, export=True)
ovmodel.save_pretrained(save_path)
os.system(f'ls -alh {save_path}')
from huggingface_hub import create_repo, upload_folder
create_repo(repo_id, exist_ok=True)
upload_folder(repo_id=repo_id, folder_path=save_path)
``` |