File size: 2,403 Bytes
e3a1b2b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 |
---
license: apache-2.0
tags:
- audio-classification
- generated_from_trainer
datasets:
- superb
metrics:
- accuracy
model-index:
- name: w2v2-ks-jpqd-quant-all-finetuned-student
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# w2v2-ks-jpqd-quant-all-finetuned-student
This model is a fine-tuned version of [anton-l/wav2vec2-base-ft-keyword-spotting](https://huggingface.co/anton-l/wav2vec2-base-ft-keyword-spotting) on the superb dataset.
It achieves the following results on the evaluation set:
- Loss: 0.0933
- Accuracy: 0.9769
This model is quantized. The input is also quantized.
Structured Sparsity in transformer block linear layers is 64%.
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 7e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 128
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.5
- num_epochs: 12.0
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| 0.4481 | 1.0 | 399 | 0.2105 | 0.9469 |
| 5.6584 | 2.0 | 798 | 5.5480 | 0.9428 |
| 8.7915 | 3.0 | 1197 | 8.6634 | 0.9601 |
| 10.4775 | 4.0 | 1596 | 10.2819 | 0.9553 |
| 10.9142 | 5.0 | 1995 | 10.7770 | 0.9657 |
| 10.9478 | 6.0 | 2394 | 10.7637 | 0.9660 |
| 0.2765 | 7.0 | 2793 | 0.1335 | 0.9678 |
| 0.2532 | 8.0 | 3192 | 0.1075 | 0.9732 |
| 0.2837 | 9.0 | 3591 | 0.1109 | 0.9700 |
| 0.2 | 10.0 | 3990 | 0.1006 | 0.9765 |
| 0.1742 | 11.0 | 4389 | 0.0930 | 0.9776 |
| 0.1718 | 12.0 | 4788 | 0.0933 | 0.9769 |
### Framework versions
- Transformers 4.26.0
- Pytorch 1.13.1+cu116
- Datasets 2.8.0
- Tokenizers 0.13.2
|