youssefkhalil320 commited on
Commit
7a78abd
·
verified ·
1 Parent(s): 9f42383

Upload folder using huggingface_hub

Browse files
1_Pooling/config.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "word_embedding_dimension": 384,
3
+ "pooling_mode_cls_token": false,
4
+ "pooling_mode_mean_tokens": true,
5
+ "pooling_mode_max_tokens": false,
6
+ "pooling_mode_mean_sqrt_len_tokens": false,
7
+ "pooling_mode_weightedmean_tokens": false,
8
+ "pooling_mode_lasttoken": false,
9
+ "include_prompt": true
10
+ }
README.md ADDED
@@ -0,0 +1,834 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model: sentence-transformers/all-MiniLM-L6-v2
3
+ language:
4
+ - en
5
+ library_name: sentence-transformers
6
+ license: apache-2.0
7
+ metrics:
8
+ - pearson_cosine
9
+ - spearman_cosine
10
+ - pearson_manhattan
11
+ - spearman_manhattan
12
+ - pearson_euclidean
13
+ - spearman_euclidean
14
+ - pearson_dot
15
+ - spearman_dot
16
+ - pearson_max
17
+ - spearman_max
18
+ pipeline_tag: sentence-similarity
19
+ tags:
20
+ - sentence-transformers
21
+ - sentence-similarity
22
+ - feature-extraction
23
+ - generated_from_trainer
24
+ - dataset_size:1363306
25
+ - loss:CoSENTLoss
26
+ widget:
27
+ - source_sentence: labneh
28
+ sentences:
29
+ - iftar
30
+ - bathing suit
31
+ - coffee cup
32
+ - source_sentence: Velvet flock Veil
33
+ sentences:
34
+ - mermaid purse
35
+ - veil
36
+ - mobile bag
37
+ - source_sentence: Red lipstick
38
+ sentences:
39
+ - chemise dress
40
+ - tote
41
+ - rouge
42
+ - source_sentence: Unisex Travel bag
43
+ sentences:
44
+ - spf
45
+ - basic vega ring
46
+ - travel backpack
47
+ - source_sentence: jeremy hush book
48
+ sentences:
49
+ - chinese jumper
50
+ - perfume
51
+ - home automation device
52
+ model-index:
53
+ - name: all-MiniLM-L6-v5-pair_score-syn-fr
54
+ results:
55
+ - task:
56
+ type: semantic-similarity
57
+ name: Semantic Similarity
58
+ dataset:
59
+ name: sts dev
60
+ type: sts-dev
61
+ metrics:
62
+ - type: pearson_cosine
63
+ value: 0.45976967432661087
64
+ name: Pearson Cosine
65
+ - type: spearman_cosine
66
+ value: 0.44063948938599923
67
+ name: Spearman Cosine
68
+ - type: pearson_manhattan
69
+ value: 0.41341637785801416
70
+ name: Pearson Manhattan
71
+ - type: spearman_manhattan
72
+ value: 0.4372479132617008
73
+ name: Spearman Manhattan
74
+ - type: pearson_euclidean
75
+ value: 0.4145493812051541
76
+ name: Pearson Euclidean
77
+ - type: spearman_euclidean
78
+ value: 0.44063932299328573
79
+ name: Spearman Euclidean
80
+ - type: pearson_dot
81
+ value: 0.45976967600824187
82
+ name: Pearson Dot
83
+ - type: spearman_dot
84
+ value: 0.44063967285735406
85
+ name: Spearman Dot
86
+ - type: pearson_max
87
+ value: 0.45976967600824187
88
+ name: Pearson Max
89
+ - type: spearman_max
90
+ value: 0.44063967285735406
91
+ name: Spearman Max
92
+ ---
93
+
94
+ # all-MiniLM-L6-v5-pair_score-syn-fr
95
+
96
+ This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [sentence-transformers/all-MiniLM-L6-v2](https://huggingface.co/sentence-transformers/all-MiniLM-L6-v2). It maps sentences & paragraphs to a 384-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
97
+
98
+ ## Model Details
99
+
100
+ ### Model Description
101
+ - **Model Type:** Sentence Transformer
102
+ - **Base model:** [sentence-transformers/all-MiniLM-L6-v2](https://huggingface.co/sentence-transformers/all-MiniLM-L6-v2) <!-- at revision fa97f6e7cb1a59073dff9e6b13e2715cf7475ac9 -->
103
+ - **Maximum Sequence Length:** 256 tokens
104
+ - **Output Dimensionality:** 384 tokens
105
+ - **Similarity Function:** Cosine Similarity
106
+ <!-- - **Training Dataset:** Unknown -->
107
+ - **Language:** en
108
+ - **License:** apache-2.0
109
+
110
+ ### Model Sources
111
+
112
+ - **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
113
+ - **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
114
+ - **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
115
+
116
+ ### Full Model Architecture
117
+
118
+ ```
119
+ SentenceTransformer(
120
+ (0): Transformer({'max_seq_length': 256, 'do_lower_case': False}) with Transformer model: BertModel
121
+ (1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
122
+ (2): Normalize()
123
+ )
124
+ ```
125
+
126
+ ## Usage
127
+
128
+ ### Direct Usage (Sentence Transformers)
129
+
130
+ First install the Sentence Transformers library:
131
+
132
+ ```bash
133
+ pip install -U sentence-transformers
134
+ ```
135
+
136
+ Then you can load this model and run inference.
137
+ ```python
138
+ from sentence_transformers import SentenceTransformer
139
+
140
+ # Download from the 🤗 Hub
141
+ model = SentenceTransformer("sentence_transformers_model_id")
142
+ # Run inference
143
+ sentences = [
144
+ 'jeremy hush book',
145
+ 'chinese jumper',
146
+ 'perfume',
147
+ ]
148
+ embeddings = model.encode(sentences)
149
+ print(embeddings.shape)
150
+ # [3, 384]
151
+
152
+ # Get the similarity scores for the embeddings
153
+ similarities = model.similarity(embeddings, embeddings)
154
+ print(similarities.shape)
155
+ # [3, 3]
156
+ ```
157
+
158
+ <!--
159
+ ### Direct Usage (Transformers)
160
+
161
+ <details><summary>Click to see the direct usage in Transformers</summary>
162
+
163
+ </details>
164
+ -->
165
+
166
+ <!--
167
+ ### Downstream Usage (Sentence Transformers)
168
+
169
+ You can finetune this model on your own dataset.
170
+
171
+ <details><summary>Click to expand</summary>
172
+
173
+ </details>
174
+ -->
175
+
176
+ <!--
177
+ ### Out-of-Scope Use
178
+
179
+ *List how the model may foreseeably be misused and address what users ought not to do with the model.*
180
+ -->
181
+
182
+ ## Evaluation
183
+
184
+ ### Metrics
185
+
186
+ #### Semantic Similarity
187
+ * Dataset: `sts-dev`
188
+ * Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator)
189
+
190
+ | Metric | Value |
191
+ |:--------------------|:-----------|
192
+ | pearson_cosine | 0.4598 |
193
+ | **spearman_cosine** | **0.4406** |
194
+ | pearson_manhattan | 0.4134 |
195
+ | spearman_manhattan | 0.4372 |
196
+ | pearson_euclidean | 0.4145 |
197
+ | spearman_euclidean | 0.4406 |
198
+ | pearson_dot | 0.4598 |
199
+ | spearman_dot | 0.4406 |
200
+ | pearson_max | 0.4598 |
201
+ | spearman_max | 0.4406 |
202
+
203
+ <!--
204
+ ## Bias, Risks and Limitations
205
+
206
+ *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
207
+ -->
208
+
209
+ <!--
210
+ ### Recommendations
211
+
212
+ *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
213
+ -->
214
+
215
+ ## Training Details
216
+
217
+ ### Training Hyperparameters
218
+ #### Non-Default Hyperparameters
219
+
220
+ - `eval_strategy`: steps
221
+ - `per_device_train_batch_size`: 128
222
+ - `per_device_eval_batch_size`: 128
223
+ - `learning_rate`: 2e-05
224
+ - `num_train_epochs`: 4
225
+ - `warmup_ratio`: 0.1
226
+ - `fp16`: True
227
+
228
+ #### All Hyperparameters
229
+ <details><summary>Click to expand</summary>
230
+
231
+ - `overwrite_output_dir`: False
232
+ - `do_predict`: False
233
+ - `eval_strategy`: steps
234
+ - `prediction_loss_only`: True
235
+ - `per_device_train_batch_size`: 128
236
+ - `per_device_eval_batch_size`: 128
237
+ - `per_gpu_train_batch_size`: None
238
+ - `per_gpu_eval_batch_size`: None
239
+ - `gradient_accumulation_steps`: 1
240
+ - `eval_accumulation_steps`: None
241
+ - `torch_empty_cache_steps`: None
242
+ - `learning_rate`: 2e-05
243
+ - `weight_decay`: 0.0
244
+ - `adam_beta1`: 0.9
245
+ - `adam_beta2`: 0.999
246
+ - `adam_epsilon`: 1e-08
247
+ - `max_grad_norm`: 1.0
248
+ - `num_train_epochs`: 4
249
+ - `max_steps`: -1
250
+ - `lr_scheduler_type`: linear
251
+ - `lr_scheduler_kwargs`: {}
252
+ - `warmup_ratio`: 0.1
253
+ - `warmup_steps`: 0
254
+ - `log_level`: passive
255
+ - `log_level_replica`: warning
256
+ - `log_on_each_node`: True
257
+ - `logging_nan_inf_filter`: True
258
+ - `save_safetensors`: True
259
+ - `save_on_each_node`: False
260
+ - `save_only_model`: False
261
+ - `restore_callback_states_from_checkpoint`: False
262
+ - `no_cuda`: False
263
+ - `use_cpu`: False
264
+ - `use_mps_device`: False
265
+ - `seed`: 42
266
+ - `data_seed`: None
267
+ - `jit_mode_eval`: False
268
+ - `use_ipex`: False
269
+ - `bf16`: False
270
+ - `fp16`: True
271
+ - `fp16_opt_level`: O1
272
+ - `half_precision_backend`: auto
273
+ - `bf16_full_eval`: False
274
+ - `fp16_full_eval`: False
275
+ - `tf32`: None
276
+ - `local_rank`: 0
277
+ - `ddp_backend`: None
278
+ - `tpu_num_cores`: None
279
+ - `tpu_metrics_debug`: False
280
+ - `debug`: []
281
+ - `dataloader_drop_last`: False
282
+ - `dataloader_num_workers`: 0
283
+ - `dataloader_prefetch_factor`: None
284
+ - `past_index`: -1
285
+ - `disable_tqdm`: False
286
+ - `remove_unused_columns`: True
287
+ - `label_names`: None
288
+ - `load_best_model_at_end`: False
289
+ - `ignore_data_skip`: False
290
+ - `fsdp`: []
291
+ - `fsdp_min_num_params`: 0
292
+ - `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
293
+ - `fsdp_transformer_layer_cls_to_wrap`: None
294
+ - `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
295
+ - `deepspeed`: None
296
+ - `label_smoothing_factor`: 0.0
297
+ - `optim`: adamw_torch
298
+ - `optim_args`: None
299
+ - `adafactor`: False
300
+ - `group_by_length`: False
301
+ - `length_column_name`: length
302
+ - `ddp_find_unused_parameters`: None
303
+ - `ddp_bucket_cap_mb`: None
304
+ - `ddp_broadcast_buffers`: False
305
+ - `dataloader_pin_memory`: True
306
+ - `dataloader_persistent_workers`: False
307
+ - `skip_memory_metrics`: True
308
+ - `use_legacy_prediction_loop`: False
309
+ - `push_to_hub`: False
310
+ - `resume_from_checkpoint`: None
311
+ - `hub_model_id`: None
312
+ - `hub_strategy`: every_save
313
+ - `hub_private_repo`: False
314
+ - `hub_always_push`: False
315
+ - `gradient_checkpointing`: False
316
+ - `gradient_checkpointing_kwargs`: None
317
+ - `include_inputs_for_metrics`: False
318
+ - `eval_do_concat_batches`: True
319
+ - `fp16_backend`: auto
320
+ - `push_to_hub_model_id`: None
321
+ - `push_to_hub_organization`: None
322
+ - `mp_parameters`:
323
+ - `auto_find_batch_size`: False
324
+ - `full_determinism`: False
325
+ - `torchdynamo`: None
326
+ - `ray_scope`: last
327
+ - `ddp_timeout`: 1800
328
+ - `torch_compile`: False
329
+ - `torch_compile_backend`: None
330
+ - `torch_compile_mode`: None
331
+ - `dispatch_batches`: None
332
+ - `split_batches`: None
333
+ - `include_tokens_per_second`: False
334
+ - `include_num_input_tokens_seen`: False
335
+ - `neftune_noise_alpha`: None
336
+ - `optim_target_modules`: None
337
+ - `batch_eval_metrics`: False
338
+ - `eval_on_start`: False
339
+ - `use_liger_kernel`: False
340
+ - `eval_use_gather_object`: False
341
+ - `batch_sampler`: batch_sampler
342
+ - `multi_dataset_batch_sampler`: proportional
343
+
344
+ </details>
345
+
346
+ ### Training Logs
347
+ <details><summary>Click to expand</summary>
348
+
349
+ | Epoch | Step | Training Loss | loss | sts-dev_spearman_cosine |
350
+ |:------:|:-----:|:-------------:|:------:|:-----------------------:|
351
+ | 0 | 0 | - | - | 0.4406 |
352
+ | 0.0094 | 100 | 17.0727 | - | - |
353
+ | 0.0188 | 200 | 16.8813 | - | - |
354
+ | 0.0282 | 300 | 16.5085 | - | - |
355
+ | 0.0376 | 400 | 15.5716 | - | - |
356
+ | 0.0469 | 500 | 14.5542 | - | - |
357
+ | 0.0563 | 600 | 13.1478 | - | - |
358
+ | 0.0657 | 700 | 11.3662 | - | - |
359
+ | 0.0751 | 800 | 9.5649 | - | - |
360
+ | 0.0845 | 900 | 8.536 | - | - |
361
+ | 0.0939 | 1000 | 8.2589 | - | - |
362
+ | 0.1033 | 1100 | 8.1649 | - | - |
363
+ | 0.1127 | 1200 | 8.134 | - | - |
364
+ | 0.1221 | 1300 | 8.1331 | - | - |
365
+ | 0.1314 | 1400 | 8.0893 | - | - |
366
+ | 0.1408 | 1500 | 8.0706 | - | - |
367
+ | 0.1502 | 1600 | 8.0786 | - | - |
368
+ | 0.1596 | 1700 | 8.058 | - | - |
369
+ | 0.1690 | 1800 | 8.0768 | - | - |
370
+ | 0.1784 | 1900 | 8.0834 | - | - |
371
+ | 0.1878 | 2000 | 8.0714 | - | - |
372
+ | 0.1972 | 2100 | 8.0671 | - | - |
373
+ | 0.2066 | 2200 | 8.051 | - | - |
374
+ | 0.2159 | 2300 | 8.0287 | - | - |
375
+ | 0.2253 | 2400 | 8.0445 | - | - |
376
+ | 0.2347 | 2500 | 8.0444 | - | - |
377
+ | 0.2441 | 2600 | 8.0679 | - | - |
378
+ | 0.2535 | 2700 | 8.0472 | - | - |
379
+ | 0.2629 | 2800 | 8.0151 | - | - |
380
+ | 0.2723 | 2900 | 8.0599 | - | - |
381
+ | 0.2817 | 3000 | 8.0304 | - | - |
382
+ | 0.2911 | 3100 | 8.0373 | - | - |
383
+ | 0.3004 | 3200 | 8.0382 | - | - |
384
+ | 0.3098 | 3300 | 8.0112 | - | - |
385
+ | 0.3192 | 3400 | 8.0209 | - | - |
386
+ | 0.3286 | 3500 | 8.0487 | - | - |
387
+ | 0.3380 | 3600 | 8.0138 | - | - |
388
+ | 0.3474 | 3700 | 8.046 | - | - |
389
+ | 0.3568 | 3800 | 7.9876 | - | - |
390
+ | 0.3662 | 3900 | 7.997 | - | - |
391
+ | 0.3756 | 4000 | 8.0462 | - | - |
392
+ | 0.3849 | 4100 | 7.9882 | - | - |
393
+ | 0.3943 | 4200 | 7.9949 | - | - |
394
+ | 0.4037 | 4300 | 7.9951 | - | - |
395
+ | 0.4131 | 4400 | 8.0202 | - | - |
396
+ | 0.4225 | 4500 | 8.0126 | - | - |
397
+ | 0.4319 | 4600 | 8.0351 | - | - |
398
+ | 0.4413 | 4700 | 8.0419 | - | - |
399
+ | 0.4507 | 4800 | 7.9959 | - | - |
400
+ | 0.4601 | 4900 | 8.0076 | - | - |
401
+ | 0.4694 | 5000 | 8.0022 | 8.0125 | - |
402
+ | 0.4788 | 5100 | 7.9819 | - | - |
403
+ | 0.4882 | 5200 | 7.9836 | - | - |
404
+ | 0.4976 | 5300 | 7.9996 | - | - |
405
+ | 0.5070 | 5400 | 8.0221 | - | - |
406
+ | 0.5164 | 5500 | 8.0854 | - | - |
407
+ | 0.5258 | 5600 | 8.0306 | - | - |
408
+ | 0.5352 | 5700 | 7.9924 | - | - |
409
+ | 0.5445 | 5800 | 7.9884 | - | - |
410
+ | 0.5539 | 5900 | 8.0253 | - | - |
411
+ | 0.5633 | 6000 | 7.9773 | - | - |
412
+ | 0.5727 | 6100 | 7.9878 | - | - |
413
+ | 0.5821 | 6200 | 8.0495 | - | - |
414
+ | 0.5915 | 6300 | 7.9908 | - | - |
415
+ | 0.6009 | 6400 | 7.9886 | - | - |
416
+ | 0.6103 | 6500 | 8.0232 | - | - |
417
+ | 0.6197 | 6600 | 7.9933 | - | - |
418
+ | 0.6290 | 6700 | 8.0143 | - | - |
419
+ | 0.6384 | 6800 | 7.9956 | - | - |
420
+ | 0.6478 | 6900 | 7.9755 | - | - |
421
+ | 0.6572 | 7000 | 7.9814 | - | - |
422
+ | 0.6666 | 7100 | 7.9849 | - | - |
423
+ | 0.6760 | 7200 | 8.0076 | - | - |
424
+ | 0.6854 | 7300 | 8.0071 | - | - |
425
+ | 0.6948 | 7400 | 8.003 | - | - |
426
+ | 0.7042 | 7500 | 7.9966 | - | - |
427
+ | 0.7135 | 7600 | 8.0052 | - | - |
428
+ | 0.7229 | 7700 | 8.0226 | - | - |
429
+ | 0.7323 | 7800 | 7.9809 | - | - |
430
+ | 0.7417 | 7900 | 7.9802 | - | - |
431
+ | 0.7511 | 8000 | 8.0008 | - | - |
432
+ | 0.7605 | 8100 | 7.9876 | - | - |
433
+ | 0.7699 | 8200 | 8.0295 | - | - |
434
+ | 0.7793 | 8300 | 7.9992 | - | - |
435
+ | 0.7887 | 8400 | 7.9942 | - | - |
436
+ | 0.7980 | 8500 | 7.9872 | - | - |
437
+ | 0.8074 | 8600 | 7.9757 | - | - |
438
+ | 0.8168 | 8700 | 7.9835 | - | - |
439
+ | 0.8262 | 8800 | 8.0555 | - | - |
440
+ | 0.8356 | 8900 | 8.0055 | - | - |
441
+ | 0.8450 | 9000 | 7.9817 | - | - |
442
+ | 0.8544 | 9100 | 7.9952 | - | - |
443
+ | 0.8638 | 9200 | 8.0083 | - | - |
444
+ | 0.8732 | 9300 | 7.984 | - | - |
445
+ | 0.8825 | 9400 | 7.9918 | - | - |
446
+ | 0.8919 | 9500 | 7.9816 | - | - |
447
+ | 0.9013 | 9600 | 8.0167 | - | - |
448
+ | 0.9107 | 9700 | 7.9747 | - | - |
449
+ | 0.9201 | 9800 | 7.9882 | - | - |
450
+ | 0.9295 | 9900 | 8.0003 | - | - |
451
+ | 0.9389 | 10000 | 8.0067 | 7.9823 | - |
452
+ | 0.9483 | 10100 | 8.017 | - | - |
453
+ | 0.9577 | 10200 | 7.9763 | - | - |
454
+ | 0.9670 | 10300 | 7.9553 | - | - |
455
+ | 0.9764 | 10400 | 7.9525 | - | - |
456
+ | 0.9858 | 10500 | 7.9987 | - | - |
457
+ | 0.9952 | 10600 | 7.9715 | - | - |
458
+ | 1.0046 | 10700 | 7.947 | - | - |
459
+ | 1.0140 | 10800 | 8.0298 | - | - |
460
+ | 1.0234 | 10900 | 7.9756 | - | - |
461
+ | 1.0328 | 11000 | 7.979 | - | - |
462
+ | 1.0422 | 11100 | 8.0417 | - | - |
463
+ | 1.0515 | 11200 | 7.9936 | - | - |
464
+ | 1.0609 | 11300 | 7.971 | - | - |
465
+ | 1.0703 | 11400 | 7.99 | - | - |
466
+ | 1.0797 | 11500 | 7.9562 | - | - |
467
+ | 1.0891 | 11600 | 7.9541 | - | - |
468
+ | 1.0985 | 11700 | 7.9788 | - | - |
469
+ | 1.1079 | 11800 | 7.9883 | - | - |
470
+ | 1.1173 | 11900 | 7.9643 | - | - |
471
+ | 1.1267 | 12000 | 7.9806 | - | - |
472
+ | 1.1360 | 12100 | 7.9543 | - | - |
473
+ | 1.1454 | 12200 | 7.9684 | - | - |
474
+ | 1.1548 | 12300 | 7.9492 | - | - |
475
+ | 1.1642 | 12400 | 7.984 | - | - |
476
+ | 1.1736 | 12500 | 7.9817 | - | - |
477
+ | 1.1830 | 12600 | 7.9621 | - | - |
478
+ | 1.1924 | 12700 | 7.9782 | - | - |
479
+ | 1.2018 | 12800 | 7.9748 | - | - |
480
+ | 1.2112 | 12900 | 7.9606 | - | - |
481
+ | 1.2205 | 13000 | 7.9654 | - | - |
482
+ | 1.2299 | 13100 | 7.9708 | - | - |
483
+ | 1.2393 | 13200 | 7.9832 | - | - |
484
+ | 1.2487 | 13300 | 7.9482 | - | - |
485
+ | 1.2581 | 13400 | 7.9717 | - | - |
486
+ | 1.2675 | 13500 | 7.9667 | - | - |
487
+ | 1.2769 | 13600 | 7.9653 | - | - |
488
+ | 1.2863 | 13700 | 7.969 | - | - |
489
+ | 1.2957 | 13800 | 7.9416 | - | - |
490
+ | 1.3050 | 13900 | 7.994 | - | - |
491
+ | 1.3144 | 14000 | 7.9821 | - | - |
492
+ | 1.3238 | 14100 | 7.9656 | - | - |
493
+ | 1.3332 | 14200 | 7.9763 | - | - |
494
+ | 1.3426 | 14300 | 7.9708 | - | - |
495
+ | 1.3520 | 14400 | 7.9713 | - | - |
496
+ | 1.3614 | 14500 | 8.0128 | - | - |
497
+ | 1.3708 | 14600 | 7.9914 | - | - |
498
+ | 1.3802 | 14700 | 7.9839 | - | - |
499
+ | 1.3895 | 14800 | 7.9485 | - | - |
500
+ | 1.3989 | 14900 | 7.9564 | - | - |
501
+ | 1.4083 | 15000 | 7.9646 | 7.9795 | - |
502
+ | 1.4177 | 15100 | 7.9443 | - | - |
503
+ | 1.4271 | 15200 | 8.002 | - | - |
504
+ | 1.4365 | 15300 | 7.9493 | - | - |
505
+ | 1.4459 | 15400 | 7.9561 | - | - |
506
+ | 1.4553 | 15500 | 7.9571 | - | - |
507
+ | 1.4647 | 15600 | 7.9634 | - | - |
508
+ | 1.4740 | 15700 | 7.9348 | - | - |
509
+ | 1.4834 | 15800 | 7.9476 | - | - |
510
+ | 1.4928 | 15900 | 7.9373 | - | - |
511
+ | 1.5022 | 16000 | 7.9985 | - | - |
512
+ | 1.5116 | 16100 | 7.9518 | - | - |
513
+ | 1.5210 | 16200 | 7.9751 | - | - |
514
+ | 1.5304 | 16300 | 7.9677 | - | - |
515
+ | 1.5398 | 16400 | 7.9538 | - | - |
516
+ | 1.5492 | 16500 | 7.9894 | - | - |
517
+ | 1.5585 | 16600 | 7.9832 | - | - |
518
+ | 1.5679 | 16700 | 7.9582 | - | - |
519
+ | 1.5773 | 16800 | 7.975 | - | - |
520
+ | 1.5867 | 16900 | 7.9379 | - | - |
521
+ | 1.5961 | 17000 | 7.9434 | - | - |
522
+ | 1.6055 | 17100 | 7.9805 | - | - |
523
+ | 1.6149 | 17200 | 7.946 | - | - |
524
+ | 1.6243 | 17300 | 7.9613 | - | - |
525
+ | 1.6336 | 17400 | 7.9687 | - | - |
526
+ | 1.6430 | 17500 | 7.9612 | - | - |
527
+ | 1.6524 | 17600 | 7.9614 | - | - |
528
+ | 1.6618 | 17700 | 7.95 | - | - |
529
+ | 1.6712 | 17800 | 7.9874 | - | - |
530
+ | 1.6806 | 17900 | 7.9665 | - | - |
531
+ | 1.6900 | 18000 | 7.9562 | - | - |
532
+ | 1.6994 | 18100 | 7.9777 | - | - |
533
+ | 1.7088 | 18200 | 7.9771 | - | - |
534
+ | 1.7181 | 18300 | 7.9405 | - | - |
535
+ | 1.7275 | 18400 | 7.9516 | - | - |
536
+ | 1.7369 | 18500 | 8.0012 | - | - |
537
+ | 1.7463 | 18600 | 7.9464 | - | - |
538
+ | 1.7557 | 18700 | 7.9623 | - | - |
539
+ | 1.7651 | 18800 | 7.9478 | - | - |
540
+ | 1.7745 | 18900 | 7.9528 | - | - |
541
+ | 1.7839 | 19000 | 7.9617 | - | - |
542
+ | 1.7933 | 19100 | 7.966 | - | - |
543
+ | 1.8026 | 19200 | 7.9718 | - | - |
544
+ | 1.8120 | 19300 | 7.9679 | - | - |
545
+ | 1.8214 | 19400 | 7.9448 | - | - |
546
+ | 1.8308 | 19500 | 7.9299 | - | - |
547
+ | 1.8402 | 19600 | 7.967 | - | - |
548
+ | 1.8496 | 19700 | 7.9327 | - | - |
549
+ | 1.8590 | 19800 | 7.9602 | - | - |
550
+ | 1.8684 | 19900 | 7.9515 | - | - |
551
+ | 1.8778 | 20000 | 7.9447 | 7.9457 | - |
552
+ | 1.8871 | 20100 | 7.9487 | - | - |
553
+ | 1.8965 | 20200 | 7.9438 | - | - |
554
+ | 1.9059 | 20300 | 7.9821 | - | - |
555
+ | 1.9153 | 20400 | 7.9485 | - | - |
556
+ | 1.9247 | 20500 | 7.9251 | - | - |
557
+ | 1.9341 | 20600 | 7.982 | - | - |
558
+ | 1.9435 | 20700 | 7.9508 | - | - |
559
+ | 1.9529 | 20800 | 7.9511 | - | - |
560
+ | 1.9623 | 20900 | 7.9747 | - | - |
561
+ | 1.9716 | 21000 | 7.9365 | - | - |
562
+ | 1.9810 | 21100 | 7.9845 | - | - |
563
+ | 1.9904 | 21200 | 8.0186 | - | - |
564
+ | 1.9998 | 21300 | 8.0228 | - | - |
565
+ | 2.0092 | 21400 | 7.949 | - | - |
566
+ | 2.0186 | 21500 | 7.9371 | - | - |
567
+ | 2.0280 | 21600 | 7.9355 | - | - |
568
+ | 2.0374 | 21700 | 7.9528 | - | - |
569
+ | 2.0468 | 21800 | 7.9246 | - | - |
570
+ | 2.0561 | 21900 | 7.9721 | - | - |
571
+ | 2.0655 | 22000 | 7.9438 | - | - |
572
+ | 2.0749 | 22100 | 7.9349 | - | - |
573
+ | 2.0843 | 22200 | 7.9315 | - | - |
574
+ | 2.0937 | 22300 | 7.9398 | - | - |
575
+ | 2.1031 | 22400 | 7.9232 | - | - |
576
+ | 2.1125 | 22500 | 7.9189 | - | - |
577
+ | 2.1219 | 22600 | 7.9296 | - | - |
578
+ | 2.1313 | 22700 | 7.9658 | - | - |
579
+ | 2.1406 | 22800 | 7.922 | - | - |
580
+ | 2.1500 | 22900 | 7.9247 | - | - |
581
+ | 2.1594 | 23000 | 7.9748 | - | - |
582
+ | 2.1688 | 23100 | 7.9632 | - | - |
583
+ | 2.1782 | 23200 | 7.9416 | - | - |
584
+ | 2.1876 | 23300 | 8.0063 | - | - |
585
+ | 2.1970 | 23400 | 7.9347 | - | - |
586
+ | 2.2064 | 23500 | 7.9242 | - | - |
587
+ | 2.2158 | 23600 | 7.9537 | - | - |
588
+ | 2.2251 | 23700 | 7.9281 | - | - |
589
+ | 2.2345 | 23800 | 7.9417 | - | - |
590
+ | 2.2439 | 23900 | 7.9699 | - | - |
591
+ | 2.2533 | 24000 | 7.9919 | - | - |
592
+ | 2.2627 | 24100 | 7.9322 | - | - |
593
+ | 2.2721 | 24200 | 7.9702 | - | - |
594
+ | 2.2815 | 24300 | 7.9421 | - | - |
595
+ | 2.2909 | 24400 | 7.9453 | - | - |
596
+ | 2.3003 | 24500 | 7.9485 | - | - |
597
+ | 2.3096 | 24600 | 7.9491 | - | - |
598
+ | 2.3190 | 24700 | 7.9575 | - | - |
599
+ | 2.3284 | 24800 | 7.9481 | - | - |
600
+ | 2.3378 | 24900 | 7.9261 | - | - |
601
+ | 2.3472 | 25000 | 7.9347 | 7.9455 | - |
602
+ | 2.3566 | 25100 | 7.9434 | - | - |
603
+ | 2.3660 | 25200 | 7.9627 | - | - |
604
+ | 2.3754 | 25300 | 7.9303 | - | - |
605
+ | 2.3848 | 25400 | 7.9455 | - | - |
606
+ | 2.3941 | 25500 | 7.9228 | - | - |
607
+ | 2.4035 | 25600 | 7.9492 | - | - |
608
+ | 2.4129 | 25700 | 7.9384 | - | - |
609
+ | 2.4223 | 25800 | 7.9408 | - | - |
610
+ | 2.4317 | 25900 | 7.9497 | - | - |
611
+ | 2.4411 | 26000 | 7.9159 | - | - |
612
+ | 2.4505 | 26100 | 7.941 | - | - |
613
+ | 2.4599 | 26200 | 7.937 | - | - |
614
+ | 2.4693 | 26300 | 7.9484 | - | - |
615
+ | 2.4786 | 26400 | 7.9238 | - | - |
616
+ | 2.4880 | 26500 | 7.9329 | - | - |
617
+ | 2.4974 | 26600 | 7.9506 | - | - |
618
+ | 2.5068 | 26700 | 7.9568 | - | - |
619
+ | 2.5162 | 26800 | 7.9548 | - | - |
620
+ | 2.5256 | 26900 | 7.9097 | - | - |
621
+ | 2.5350 | 27000 | 7.9085 | - | - |
622
+ | 2.5444 | 27100 | 7.9368 | - | - |
623
+ | 2.5538 | 27200 | 7.9546 | - | - |
624
+ | 2.5631 | 27300 | 7.9255 | - | - |
625
+ | 2.5725 | 27400 | 7.9536 | - | - |
626
+ | 2.5819 | 27500 | 7.919 | - | - |
627
+ | 2.5913 | 27600 | 7.917 | - | - |
628
+ | 2.6007 | 27700 | 7.937 | - | - |
629
+ | 2.6101 | 27800 | 7.9159 | - | - |
630
+ | 2.6195 | 27900 | 7.9306 | - | - |
631
+ | 2.6289 | 28000 | 7.9592 | - | - |
632
+ | 2.6382 | 28100 | 7.9375 | - | - |
633
+ | 2.6476 | 28200 | 7.9225 | - | - |
634
+ | 2.6570 | 28300 | 7.958 | - | - |
635
+ | 2.6664 | 28400 | 7.9059 | - | - |
636
+ | 2.6758 | 28500 | 7.936 | - | - |
637
+ | 2.6852 | 28600 | 7.9138 | - | - |
638
+ | 2.6946 | 28700 | 7.9565 | - | - |
639
+ | 2.7040 | 28800 | 7.926 | - | - |
640
+ | 2.7134 | 28900 | 7.9365 | - | - |
641
+ | 2.7227 | 29000 | 7.9122 | - | - |
642
+ | 2.7321 | 29100 | 7.9196 | - | - |
643
+ | 2.7415 | 29200 | 7.9533 | - | - |
644
+ | 2.7509 | 29300 | 7.925 | - | - |
645
+ | 2.7603 | 29400 | 7.9594 | - | - |
646
+ | 2.7697 | 29500 | 7.9115 | - | - |
647
+ | 2.7791 | 29600 | 7.956 | - | - |
648
+ | 2.7885 | 29700 | 7.9394 | - | - |
649
+ | 2.7979 | 29800 | 7.9165 | - | - |
650
+ | 2.8072 | 29900 | 7.9471 | - | - |
651
+ | 2.8166 | 30000 | 7.9724 | 7.9237 | - |
652
+ | 2.8260 | 30100 | 7.9205 | - | - |
653
+ | 2.8354 | 30200 | 7.9513 | - | - |
654
+ | 2.8448 | 30300 | 7.9101 | - | - |
655
+ | 2.8542 | 30400 | 7.9237 | - | - |
656
+ | 2.8636 | 30500 | 7.9428 | - | - |
657
+ | 2.8730 | 30600 | 7.9408 | - | - |
658
+ | 2.8824 | 30700 | 7.956 | - | - |
659
+ | 2.8917 | 30800 | 7.9196 | - | - |
660
+ | 2.9011 | 30900 | 7.9262 | - | - |
661
+ | 2.9105 | 31000 | 7.9516 | - | - |
662
+ | 2.9199 | 31100 | 7.9086 | - | - |
663
+ | 2.9293 | 31200 | 7.9339 | - | - |
664
+ | 2.9387 | 31300 | 7.9334 | - | - |
665
+ | 2.9481 | 31400 | 7.9308 | - | - |
666
+ | 2.9575 | 31500 | 7.9569 | - | - |
667
+ | 2.9669 | 31600 | 7.9256 | - | - |
668
+ | 2.9762 | 31700 | 7.9108 | - | - |
669
+ | 2.9856 | 31800 | 7.9409 | - | - |
670
+ | 2.9950 | 31900 | 7.9159 | - | - |
671
+ | 3.0044 | 32000 | 7.8975 | - | - |
672
+ | 3.0138 | 32100 | 7.9583 | - | - |
673
+ | 3.0232 | 32200 | 7.9031 | - | - |
674
+ | 3.0326 | 32300 | 7.9448 | - | - |
675
+ | 3.0420 | 32400 | 7.9438 | - | - |
676
+ | 3.0514 | 32500 | 7.9284 | - | - |
677
+ | 3.0607 | 32600 | 7.9124 | - | - |
678
+ | 3.0701 | 32700 | 7.9153 | - | - |
679
+ | 3.0795 | 32800 | 7.9188 | - | - |
680
+ | 3.0889 | 32900 | 7.9358 | - | - |
681
+ | 3.0983 | 33000 | 7.9436 | - | - |
682
+ | 3.1077 | 33100 | 7.9492 | - | - |
683
+ | 3.1171 | 33200 | 7.9032 | - | - |
684
+ | 3.1265 | 33300 | 7.922 | - | - |
685
+ | 3.1359 | 33400 | 7.9677 | - | - |
686
+ | 3.1452 | 33500 | 7.9127 | - | - |
687
+ | 3.1546 | 33600 | 7.9381 | - | - |
688
+ | 3.1640 | 33700 | 7.9198 | - | - |
689
+ | 3.1734 | 33800 | 7.9183 | - | - |
690
+ | 3.1828 | 33900 | 7.9182 | - | - |
691
+ | 3.1922 | 34000 | 7.9261 | - | - |
692
+ | 3.2016 | 34100 | 7.9091 | - | - |
693
+ | 3.2110 | 34200 | 7.941 | - | - |
694
+ | 3.2204 | 34300 | 7.9239 | - | - |
695
+ | 3.2297 | 34400 | 7.9208 | - | - |
696
+ | 3.2391 | 34500 | 7.9499 | - | - |
697
+ | 3.2485 | 34600 | 7.9251 | - | - |
698
+ | 3.2579 | 34700 | 7.9219 | - | - |
699
+ | 3.2673 | 34800 | 7.9344 | - | - |
700
+ | 3.2767 | 34900 | 7.9496 | - | - |
701
+ | 3.2861 | 35000 | 7.9184 | 7.9239 | - |
702
+ | 3.2955 | 35100 | 7.9053 | - | - |
703
+ | 3.3049 | 35200 | 7.931 | - | - |
704
+ | 3.3142 | 35300 | 7.9347 | - | - |
705
+ | 3.3236 | 35400 | 7.9575 | - | - |
706
+ | 3.3330 | 35500 | 7.9259 | - | - |
707
+ | 3.3424 | 35600 | 7.9262 | - | - |
708
+ | 3.3518 | 35700 | 7.9206 | - | - |
709
+ | 3.3612 | 35800 | 7.9445 | - | - |
710
+ | 3.3706 | 35900 | 7.9043 | - | - |
711
+ | 3.3800 | 36000 | 7.9164 | - | - |
712
+ | 3.3894 | 36100 | 7.9199 | - | - |
713
+ | 3.3987 | 36200 | 7.9132 | - | - |
714
+ | 3.4081 | 36300 | 7.9163 | - | - |
715
+ | 3.4175 | 36400 | 7.9203 | - | - |
716
+ | 3.4269 | 36500 | 7.9491 | - | - |
717
+ | 3.4363 | 36600 | 7.9093 | - | - |
718
+ | 3.4457 | 36700 | 7.9271 | - | - |
719
+ | 3.4551 | 36800 | 7.9202 | - | - |
720
+ | 3.4645 | 36900 | 7.9193 | - | - |
721
+ | 3.4739 | 37000 | 7.9041 | - | - |
722
+ | 3.4832 | 37100 | 7.9284 | - | - |
723
+ | 3.4926 | 37200 | 7.9633 | - | - |
724
+ | 3.5020 | 37300 | 7.9078 | - | - |
725
+ | 3.5114 | 37400 | 7.9144 | - | - |
726
+ | 3.5208 | 37500 | 7.9011 | - | - |
727
+ | 3.5302 | 37600 | 7.9101 | - | - |
728
+ | 3.5396 | 37700 | 7.9331 | - | - |
729
+ | 3.5490 | 37800 | 7.9349 | - | - |
730
+ | 3.5584 | 37900 | 7.9272 | - | - |
731
+ | 3.5677 | 38000 | 7.9033 | - | - |
732
+ | 3.5771 | 38100 | 7.895 | - | - |
733
+ | 3.5865 | 38200 | 7.9082 | - | - |
734
+ | 3.5959 | 38300 | 7.9544 | - | - |
735
+ | 3.6053 | 38400 | 7.9063 | - | - |
736
+ | 3.6147 | 38500 | 7.9249 | - | - |
737
+ | 3.6241 | 38600 | 7.9124 | - | - |
738
+ | 3.6335 | 38700 | 7.9174 | - | - |
739
+ | 3.6429 | 38800 | 7.9275 | - | - |
740
+ | 3.6522 | 38900 | 7.9045 | - | - |
741
+ | 3.6616 | 39000 | 7.9327 | - | - |
742
+ | 3.6710 | 39100 | 7.9383 | - | - |
743
+ | 3.6804 | 39200 | 7.9134 | - | - |
744
+ | 3.6898 | 39300 | 7.925 | - | - |
745
+ | 3.6992 | 39400 | 7.9214 | - | - |
746
+ | 3.7086 | 39500 | 7.9207 | - | - |
747
+ | 3.7180 | 39600 | 7.9192 | - | - |
748
+ | 3.7273 | 39700 | 7.9194 | - | - |
749
+ | 3.7367 | 39800 | 7.9242 | - | - |
750
+ | 3.7461 | 39900 | 7.905 | - | - |
751
+ | 3.7555 | 40000 | 7.9278 | 7.9185 | - |
752
+ | 3.7649 | 40100 | 7.9147 | - | - |
753
+ | 3.7743 | 40200 | 7.9194 | - | - |
754
+ | 3.7837 | 40300 | 7.9004 | - | - |
755
+ | 3.7931 | 40400 | 7.9549 | - | - |
756
+ | 3.8025 | 40500 | 7.9326 | - | - |
757
+ | 3.8118 | 40600 | 7.9124 | - | - |
758
+ | 3.8212 | 40700 | 7.9355 | - | - |
759
+ | 3.8306 | 40800 | 7.926 | - | - |
760
+ | 3.8400 | 40900 | 7.9491 | - | - |
761
+ | 3.8494 | 41000 | 7.9163 | - | - |
762
+ | 3.8588 | 41100 | 7.9554 | - | - |
763
+ | 3.8682 | 41200 | 7.9162 | - | - |
764
+ | 3.8776 | 41300 | 7.8916 | - | - |
765
+ | 3.8870 | 41400 | 7.8969 | - | - |
766
+ | 3.8963 | 41500 | 7.9131 | - | - |
767
+ | 3.9057 | 41600 | 7.9272 | - | - |
768
+ | 3.9151 | 41700 | 7.9482 | - | - |
769
+ | 3.9245 | 41800 | 7.9168 | - | - |
770
+ | 3.9339 | 41900 | 7.9062 | - | - |
771
+ | 3.9433 | 42000 | 7.9238 | - | - |
772
+ | 3.9527 | 42100 | 7.9407 | - | - |
773
+ | 3.9621 | 42200 | 7.9482 | - | - |
774
+ | 3.9715 | 42300 | 7.9221 | - | - |
775
+ | 3.9808 | 42400 | 7.9221 | - | - |
776
+ | 3.9902 | 42500 | 7.9313 | - | - |
777
+ | 3.9996 | 42600 | 7.9441 | - | - |
778
+
779
+ </details>
780
+
781
+ ### Framework Versions
782
+ - Python: 3.8.10
783
+ - Sentence Transformers: 3.1.1
784
+ - Transformers: 4.45.2
785
+ - PyTorch: 2.4.1+cu118
786
+ - Accelerate: 1.0.1
787
+ - Datasets: 3.0.1
788
+ - Tokenizers: 0.20.3
789
+
790
+ ## Citation
791
+
792
+ ### BibTeX
793
+
794
+ #### Sentence Transformers
795
+ ```bibtex
796
+ @inproceedings{reimers-2019-sentence-bert,
797
+ title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
798
+ author = "Reimers, Nils and Gurevych, Iryna",
799
+ booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
800
+ month = "11",
801
+ year = "2019",
802
+ publisher = "Association for Computational Linguistics",
803
+ url = "https://arxiv.org/abs/1908.10084",
804
+ }
805
+ ```
806
+
807
+ #### CoSENTLoss
808
+ ```bibtex
809
+ @online{kexuefm-8847,
810
+ title={CoSENT: A more efficient sentence vector scheme than Sentence-BERT},
811
+ author={Su Jianlin},
812
+ year={2022},
813
+ month={Jan},
814
+ url={https://kexue.fm/archives/8847},
815
+ }
816
+ ```
817
+
818
+ <!--
819
+ ## Glossary
820
+
821
+ *Clearly define terms in order to be accessible across audiences.*
822
+ -->
823
+
824
+ <!--
825
+ ## Model Card Authors
826
+
827
+ *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
828
+ -->
829
+
830
+ <!--
831
+ ## Model Card Contact
832
+
833
+ *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
834
+ -->
config.json ADDED
@@ -0,0 +1,26 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "sentence-transformers/all-MiniLM-L6-v2",
3
+ "architectures": [
4
+ "BertModel"
5
+ ],
6
+ "attention_probs_dropout_prob": 0.1,
7
+ "classifier_dropout": null,
8
+ "gradient_checkpointing": false,
9
+ "hidden_act": "gelu",
10
+ "hidden_dropout_prob": 0.1,
11
+ "hidden_size": 384,
12
+ "initializer_range": 0.02,
13
+ "intermediate_size": 1536,
14
+ "layer_norm_eps": 1e-12,
15
+ "max_position_embeddings": 512,
16
+ "model_type": "bert",
17
+ "num_attention_heads": 12,
18
+ "num_hidden_layers": 6,
19
+ "pad_token_id": 0,
20
+ "position_embedding_type": "absolute",
21
+ "torch_dtype": "float32",
22
+ "transformers_version": "4.45.2",
23
+ "type_vocab_size": 2,
24
+ "use_cache": true,
25
+ "vocab_size": 30522
26
+ }
config_sentence_transformers.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "__version__": {
3
+ "sentence_transformers": "3.1.1",
4
+ "transformers": "4.45.2",
5
+ "pytorch": "2.4.1+cu118"
6
+ },
7
+ "prompts": {},
8
+ "default_prompt_name": null,
9
+ "similarity_fn_name": null
10
+ }
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:170da57840f011df0f73032ffdfad9b122f812181cf422a979d35b8cb1236fd0
3
+ size 90864192
modules.json ADDED
@@ -0,0 +1,20 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [
2
+ {
3
+ "idx": 0,
4
+ "name": "0",
5
+ "path": "",
6
+ "type": "sentence_transformers.models.Transformer"
7
+ },
8
+ {
9
+ "idx": 1,
10
+ "name": "1",
11
+ "path": "1_Pooling",
12
+ "type": "sentence_transformers.models.Pooling"
13
+ },
14
+ {
15
+ "idx": 2,
16
+ "name": "2",
17
+ "path": "2_Normalize",
18
+ "type": "sentence_transformers.models.Normalize"
19
+ }
20
+ ]
sentence_bert_config.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "max_seq_length": 256,
3
+ "do_lower_case": false
4
+ }
special_tokens_map.json ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "cls_token": {
3
+ "content": "[CLS]",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "mask_token": {
10
+ "content": "[MASK]",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "pad_token": {
17
+ "content": "[PAD]",
18
+ "lstrip": false,
19
+ "normalized": false,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ },
23
+ "sep_token": {
24
+ "content": "[SEP]",
25
+ "lstrip": false,
26
+ "normalized": false,
27
+ "rstrip": false,
28
+ "single_word": false
29
+ },
30
+ "unk_token": {
31
+ "content": "[UNK]",
32
+ "lstrip": false,
33
+ "normalized": false,
34
+ "rstrip": false,
35
+ "single_word": false
36
+ }
37
+ }
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer_config.json ADDED
@@ -0,0 +1,64 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "added_tokens_decoder": {
3
+ "0": {
4
+ "content": "[PAD]",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false,
9
+ "special": true
10
+ },
11
+ "100": {
12
+ "content": "[UNK]",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false,
17
+ "special": true
18
+ },
19
+ "101": {
20
+ "content": "[CLS]",
21
+ "lstrip": false,
22
+ "normalized": false,
23
+ "rstrip": false,
24
+ "single_word": false,
25
+ "special": true
26
+ },
27
+ "102": {
28
+ "content": "[SEP]",
29
+ "lstrip": false,
30
+ "normalized": false,
31
+ "rstrip": false,
32
+ "single_word": false,
33
+ "special": true
34
+ },
35
+ "103": {
36
+ "content": "[MASK]",
37
+ "lstrip": false,
38
+ "normalized": false,
39
+ "rstrip": false,
40
+ "single_word": false,
41
+ "special": true
42
+ }
43
+ },
44
+ "clean_up_tokenization_spaces": false,
45
+ "cls_token": "[CLS]",
46
+ "do_basic_tokenize": true,
47
+ "do_lower_case": true,
48
+ "mask_token": "[MASK]",
49
+ "max_length": 128,
50
+ "model_max_length": 256,
51
+ "never_split": null,
52
+ "pad_to_multiple_of": null,
53
+ "pad_token": "[PAD]",
54
+ "pad_token_type_id": 0,
55
+ "padding_side": "right",
56
+ "sep_token": "[SEP]",
57
+ "stride": 0,
58
+ "strip_accents": null,
59
+ "tokenize_chinese_chars": true,
60
+ "tokenizer_class": "BertTokenizer",
61
+ "truncation_side": "right",
62
+ "truncation_strategy": "longest_first",
63
+ "unk_token": "[UNK]"
64
+ }
vocab.txt ADDED
The diff for this file is too large to render. See raw diff