youngzhou12 commited on
Commit
d132baf
·
verified ·
1 Parent(s): f5ef33a

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +20 -19
README.md CHANGED
@@ -6,14 +6,14 @@ tags:
6
  - BenchX
7
  ---
8
 
9
- # M-FLAG Checkpoint Model Card
10
 
11
- A retrained M-FLAG model for benchmarking medical vision-language pre-training methods within the BenchX framework.
12
 
13
  ## Model Details
14
- - **Model Type**: M-FLAG
15
  - **Architecture**: ResNet-50 image encoder and CXR-BERT text encoder
16
- - **Original Papers**: [M-FLAG: Medical Vision-Language Pre-training with Frozen Language Models and Latent Space Geometry Optimization](https://arxiv.org/abs/2307.08347)
17
  - **Benchmark Paper**: [BenchX: A Unified Benchmark Framework for Medical Vision-Language Pretraining on Chest X-Rays](https://arxiv.org/abs/2410.21969)
18
  - **Benchmark Framework**: https://github.com/yangzhou12/BenchX
19
 
@@ -37,44 +37,45 @@ Please follow the [instruction](https://github.com/yangzhou12/BenchX/blob/releas
37
 
38
  ### 1. Classification
39
 
40
- To fine-tune M-FLAG for classification, run this command:
41
 
42
  ```
43
- python bin/train.py config/classification/<dataset_name>/M-FLAG.yml
44
  ```
45
 
46
  ### 2. Segmentation
47
- To fine-tune M-FLAG for segmentation, run this command:
48
 
49
  ```
50
- python mmsegmentation/tools/train.py config/benchmark/<dataset_name>/M-FLAG.yml
51
  ```
52
 
53
  ### 3. Report Generation
54
- To fine-tune M-FLAG for report generation, run this command:
55
  ```
56
- python bin/train.py config/report_generation/<dataset_name>/M-FLAG.yml
57
  ```
58
 
59
  ### 4. Evaluation
60
- To evaluate fine-tuned M-FLAG models, run:
61
 
62
  ```
63
  # For classification and report generation
64
- python bin/test.py config/<task_name>/<dataset_name>/M-FLAG.yml validator.splits=[test] ckpt_dir=<path_to_checkpoint>
65
 
66
  # For segmentation
67
- python mmsegmentation/tools/my_test.py mmsegmentation/config/<dataset_name>/M-FLAG.yml <path_to_checkpoint>
68
  ```
69
 
70
  ## Citations
71
  ```bibtex
72
- @inproceedings{huang2021M-FLAG,
73
- title={M-FLAG: Medical Vision-Language Pre-training with Frozen Language Models and Latent Space Geometry Optimization},
74
- author={Liu, Che and Cheng, Sibo and Chen, Chen and Qiao, Mengyun and Zhang, Weitong and Shah, Anand and Bai, Wenjia and Arcucci, Rossella},
75
- booktitle={Proceedings of MICCAI},
76
- pages={637--647},
77
- year={2023},
 
78
  }
79
  ```
80
  ```bibtex
 
6
  - BenchX
7
  ---
8
 
9
+ # MGCA-ResNet50 Checkpoint Model Card
10
 
11
+ A retrained MGCA-ResNet50 model for benchmarking medical vision-language pre-training methods within the BenchX framework.
12
 
13
  ## Model Details
14
+ - **Model Type**: MGCA-ResNet50
15
  - **Architecture**: ResNet-50 image encoder and CXR-BERT text encoder
16
+ - **Original Papers**: [Multi-Granularity Cross-modal Alignment for Generalized Medical Visual Representation Learning](https://arxiv.org/abs/2210.06044)
17
  - **Benchmark Paper**: [BenchX: A Unified Benchmark Framework for Medical Vision-Language Pretraining on Chest X-Rays](https://arxiv.org/abs/2410.21969)
18
  - **Benchmark Framework**: https://github.com/yangzhou12/BenchX
19
 
 
37
 
38
  ### 1. Classification
39
 
40
+ To fine-tune MGCA-ResNet50 for classification, run this command:
41
 
42
  ```
43
+ python bin/train.py config/classification/<dataset_name>/MGCA-ResNet50.yml
44
  ```
45
 
46
  ### 2. Segmentation
47
+ To fine-tune MGCA-ResNet50 for segmentation, run this command:
48
 
49
  ```
50
+ python mmsegmentation/tools/train.py config/benchmark/<dataset_name>/MGCA-ResNet50.yml
51
  ```
52
 
53
  ### 3. Report Generation
54
+ To fine-tune MGCA-ResNet50 for report generation, run this command:
55
  ```
56
+ python bin/train.py config/report_generation/<dataset_name>/MGCA-ResNet50.yml
57
  ```
58
 
59
  ### 4. Evaluation
60
+ To evaluate fine-tuned MGCA-ResNet50 models, run:
61
 
62
  ```
63
  # For classification and report generation
64
+ python bin/test.py config/<task_name>/<dataset_name>/MGCA-ResNet50.yml validator.splits=[test] ckpt_dir=<path_to_checkpoint>
65
 
66
  # For segmentation
67
+ python mmsegmentation/tools/my_test.py mmsegmentation/config/<dataset_name>/MGCA-ResNet50.yml <path_to_checkpoint>
68
  ```
69
 
70
  ## Citations
71
  ```bibtex
72
+ @article{wang2022multi,
73
+ title={Multi-granularity cross-modal alignment for generalized medical visual representation learning},
74
+ author={Wang, Fuying and Zhou, Yuyin and Wang, Shujun and Vardhanabhuti, Varut and Yu, Lequan},
75
+ journal={Advances in NeurIPS},
76
+ volume={35},
77
+ pages={33536--33549},
78
+ year={2022}
79
  }
80
  ```
81
  ```bibtex