yehiawp4 commited on
Commit
ffeda4d
·
verified ·
1 Parent(s): fd91a1e

Model save

Browse files
Files changed (1) hide show
  1. README.md +66 -0
README.md ADDED
@@ -0,0 +1,66 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: mit
3
+ base_model: google/vivit-b-16x2-kinetics400
4
+ tags:
5
+ - generated_from_trainer
6
+ metrics:
7
+ - accuracy
8
+ model-index:
9
+ - name: vivit-b-16x2-kinetics400-finetuned-my-dataset-6-epochs
10
+ results: []
11
+ ---
12
+
13
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
14
+ should probably proofread and complete it, then remove this comment. -->
15
+
16
+ # vivit-b-16x2-kinetics400-finetuned-my-dataset-6-epochs
17
+
18
+ This model is a fine-tuned version of [google/vivit-b-16x2-kinetics400](https://huggingface.co/google/vivit-b-16x2-kinetics400) on an unknown dataset.
19
+ It achieves the following results on the evaluation set:
20
+ - Loss: 0.1102
21
+ - Accuracy: 0.9896
22
+
23
+ ## Model description
24
+
25
+ More information needed
26
+
27
+ ## Intended uses & limitations
28
+
29
+ More information needed
30
+
31
+ ## Training and evaluation data
32
+
33
+ More information needed
34
+
35
+ ## Training procedure
36
+
37
+ ### Training hyperparameters
38
+
39
+ The following hyperparameters were used during training:
40
+ - learning_rate: 5e-05
41
+ - train_batch_size: 2
42
+ - eval_batch_size: 2
43
+ - seed: 42
44
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
45
+ - lr_scheduler_type: linear
46
+ - lr_scheduler_warmup_ratio: 0.1
47
+ - training_steps: 2574
48
+
49
+ ### Training results
50
+
51
+ | Training Loss | Epoch | Step | Validation Loss | Accuracy |
52
+ |:-------------:|:-----:|:----:|:---------------:|:--------:|
53
+ | 1.1371 | 0.17 | 430 | 0.7349 | 0.7789 |
54
+ | 0.5346 | 1.17 | 860 | 0.2912 | 0.8895 |
55
+ | 0.0004 | 2.17 | 1290 | 0.3184 | 0.9211 |
56
+ | 0.0006 | 3.17 | 1720 | 0.3577 | 0.9368 |
57
+ | 0.0382 | 4.17 | 2150 | 0.3491 | 0.9316 |
58
+ | 0.0002 | 5.16 | 2574 | 0.3021 | 0.9421 |
59
+
60
+
61
+ ### Framework versions
62
+
63
+ - Transformers 4.39.0
64
+ - Pytorch 2.1.0
65
+ - Datasets 2.18.0
66
+ - Tokenizers 0.15.2