Upload CogAgentForCausalLM
Browse files- config.json +43 -0
- configuration_cogagent.py +51 -0
- cross_visual.py +797 -0
- generation_config.json +7 -0
- model-00001-of-00008.safetensors +3 -0
- model-00002-of-00008.safetensors +3 -0
- model-00003-of-00008.safetensors +3 -0
- model-00004-of-00008.safetensors +3 -0
- model-00005-of-00008.safetensors +3 -0
- model-00006-of-00008.safetensors +3 -0
- model-00007-of-00008.safetensors +3 -0
- model-00008-of-00008.safetensors +3 -0
- model.safetensors.index.json +0 -0
- modeling_cogagent.py +974 -0
- visual.py +136 -0
config.json
ADDED
|
@@ -0,0 +1,43 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"_name_or_path": "/content/d2chf_bin",
|
| 3 |
+
"architectures": [
|
| 4 |
+
"CogAgentForCausalLM"
|
| 5 |
+
],
|
| 6 |
+
"auto_map": {
|
| 7 |
+
"AutoConfig": "configuration_cogagent.CogAgentConfig",
|
| 8 |
+
"AutoModelForCausalLM": "modeling_cogagent.CogAgentForCausalLM"
|
| 9 |
+
},
|
| 10 |
+
"bos_token_id": 1,
|
| 11 |
+
"cross_compute_hidden_size": 1024,
|
| 12 |
+
"cross_hidden_size": 1024,
|
| 13 |
+
"cross_image_size": 1120,
|
| 14 |
+
"eos_token_id": 2,
|
| 15 |
+
"hidden_act": "silu",
|
| 16 |
+
"hidden_size": 4096,
|
| 17 |
+
"initializer_range": 0.02,
|
| 18 |
+
"intermediate_size": 11008,
|
| 19 |
+
"max_position_embeddings": 2048,
|
| 20 |
+
"num_attention_heads": 32,
|
| 21 |
+
"num_hidden_layers": 32,
|
| 22 |
+
"pad_token_id": 0,
|
| 23 |
+
"rms_norm_eps": 1e-05,
|
| 24 |
+
"template_version": "chat",
|
| 25 |
+
"tie_word_embeddings": false,
|
| 26 |
+
"torch_dtype": "float16",
|
| 27 |
+
"transformers_version": "4.37.2",
|
| 28 |
+
"use_cache": true,
|
| 29 |
+
"vision_config": {
|
| 30 |
+
"dropout_prob": 0.0,
|
| 31 |
+
"hidden_act": "gelu",
|
| 32 |
+
"hidden_size": 1792,
|
| 33 |
+
"image_size": 224,
|
| 34 |
+
"in_channels": 3,
|
| 35 |
+
"intermediate_size": 15360,
|
| 36 |
+
"layer_norm_eps": 1e-06,
|
| 37 |
+
"num_heads": 16,
|
| 38 |
+
"num_hidden_layers": 63,
|
| 39 |
+
"num_positions": 257,
|
| 40 |
+
"patch_size": 14
|
| 41 |
+
},
|
| 42 |
+
"vocab_size": 32000
|
| 43 |
+
}
|
configuration_cogagent.py
ADDED
|
@@ -0,0 +1,51 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from typing import Literal
|
| 2 |
+
from transformers import PretrainedConfig
|
| 3 |
+
|
| 4 |
+
|
| 5 |
+
class CogAgentConfig(PretrainedConfig):
|
| 6 |
+
_auto_class = "AutoConfig"
|
| 7 |
+
|
| 8 |
+
def __init__(
|
| 9 |
+
self,
|
| 10 |
+
vocab_size=32000,
|
| 11 |
+
hidden_size=4096,
|
| 12 |
+
cross_hidden_size=1024,
|
| 13 |
+
cross_compute_hidden_size=1024,
|
| 14 |
+
cross_image_size=1120,
|
| 15 |
+
intermediate_size=11008,
|
| 16 |
+
num_hidden_layers=32,
|
| 17 |
+
num_attention_heads=32,
|
| 18 |
+
hidden_act='silu',
|
| 19 |
+
max_position_embeddings=2048,
|
| 20 |
+
initializer_range=0.02,
|
| 21 |
+
rms_norm_eps=1e-06,
|
| 22 |
+
template_version: Literal["base", "chat"] = "chat",
|
| 23 |
+
|
| 24 |
+
pad_token_id=0,
|
| 25 |
+
bos_token_id=1,
|
| 26 |
+
eos_token_id=2,
|
| 27 |
+
tie_word_embeddings=False,
|
| 28 |
+
use_cache=True,
|
| 29 |
+
**kwargs,
|
| 30 |
+
):
|
| 31 |
+
self.hidden_size = hidden_size
|
| 32 |
+
self.cross_hidden_size = cross_hidden_size
|
| 33 |
+
self.cross_compute_hidden_size = cross_compute_hidden_size
|
| 34 |
+
self.cross_image_size = cross_image_size
|
| 35 |
+
self.intermediate_size = intermediate_size
|
| 36 |
+
self.num_attention_heads = num_attention_heads
|
| 37 |
+
self.max_position_embeddings = max_position_embeddings
|
| 38 |
+
self.rms_norm_eps = rms_norm_eps
|
| 39 |
+
self.initializer_range = initializer_range
|
| 40 |
+
self.vocab_size = vocab_size
|
| 41 |
+
self.num_hidden_layers = num_hidden_layers
|
| 42 |
+
self.hidden_act = hidden_act
|
| 43 |
+
self.template_version = template_version
|
| 44 |
+
self.use_cache = use_cache
|
| 45 |
+
super().__init__(
|
| 46 |
+
pad_token_id=pad_token_id,
|
| 47 |
+
bos_token_id=bos_token_id,
|
| 48 |
+
eos_token_id=eos_token_id,
|
| 49 |
+
tie_word_embeddings=tie_word_embeddings,
|
| 50 |
+
**kwargs,
|
| 51 |
+
)
|
cross_visual.py
ADDED
|
@@ -0,0 +1,797 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from math import pi
|
| 2 |
+
import torch
|
| 3 |
+
from torch import nn
|
| 4 |
+
from einops import rearrange, repeat
|
| 5 |
+
import logging
|
| 6 |
+
|
| 7 |
+
def broadcat(tensors, dim = -1):
|
| 8 |
+
num_tensors = len(tensors)
|
| 9 |
+
shape_lens = set(list(map(lambda t: len(t.shape), tensors)))
|
| 10 |
+
assert len(shape_lens) == 1, 'tensors must all have the same number of dimensions'
|
| 11 |
+
shape_len = list(shape_lens)[0]
|
| 12 |
+
dim = (dim + shape_len) if dim < 0 else dim
|
| 13 |
+
dims = list(zip(*map(lambda t: list(t.shape), tensors)))
|
| 14 |
+
expandable_dims = [(i, val) for i, val in enumerate(dims) if i != dim]
|
| 15 |
+
assert all([*map(lambda t: len(set(t[1])) <= 2, expandable_dims)]), 'invalid dimensions for broadcastable concatentation'
|
| 16 |
+
max_dims = list(map(lambda t: (t[0], max(t[1])), expandable_dims))
|
| 17 |
+
expanded_dims = list(map(lambda t: (t[0], (t[1],) * num_tensors), max_dims))
|
| 18 |
+
expanded_dims.insert(dim, (dim, dims[dim]))
|
| 19 |
+
expandable_shapes = list(zip(*map(lambda t: t[1], expanded_dims)))
|
| 20 |
+
tensors = list(map(lambda t: t[0].expand(*t[1]), zip(tensors, expandable_shapes)))
|
| 21 |
+
return torch.cat(tensors, dim = dim)
|
| 22 |
+
|
| 23 |
+
def rotate_half(x):
|
| 24 |
+
x = rearrange(x, '... (d r) -> ... d r', r = 2)
|
| 25 |
+
x1, x2 = x.unbind(dim = -1)
|
| 26 |
+
x = torch.stack((-x2, x1), dim = -1)
|
| 27 |
+
return rearrange(x, '... d r -> ... (d r)')
|
| 28 |
+
|
| 29 |
+
class VisionRotaryEmbeddingFast(nn.Module):
|
| 30 |
+
def __init__(
|
| 31 |
+
self,
|
| 32 |
+
dim,
|
| 33 |
+
pt_seq_len,
|
| 34 |
+
ft_seq_len=None,
|
| 35 |
+
custom_freqs = None,
|
| 36 |
+
freqs_for = 'lang',
|
| 37 |
+
theta = 10000,
|
| 38 |
+
max_freq = 10,
|
| 39 |
+
num_freqs = 1,
|
| 40 |
+
patch_dropout = 0.
|
| 41 |
+
):
|
| 42 |
+
super().__init__()
|
| 43 |
+
if custom_freqs:
|
| 44 |
+
freqs = custom_freqs
|
| 45 |
+
elif freqs_for == 'lang':
|
| 46 |
+
freqs = 1. / (theta ** (torch.arange(0, dim, 2)[:(dim // 2)].float() / dim))
|
| 47 |
+
elif freqs_for == 'pixel':
|
| 48 |
+
freqs = torch.linspace(1., max_freq / 2, dim // 2) * pi
|
| 49 |
+
elif freqs_for == 'constant':
|
| 50 |
+
freqs = torch.ones(num_freqs).float()
|
| 51 |
+
else:
|
| 52 |
+
raise ValueError(f'unknown modality {freqs_for}')
|
| 53 |
+
|
| 54 |
+
if ft_seq_len is None: ft_seq_len = pt_seq_len
|
| 55 |
+
t = torch.arange(ft_seq_len) / ft_seq_len * pt_seq_len
|
| 56 |
+
|
| 57 |
+
freqs = torch.einsum('..., f -> ... f', t, freqs)
|
| 58 |
+
freqs = repeat(freqs, '... n -> ... (n r)', r = 2)
|
| 59 |
+
freqs = broadcat((freqs[:, None, :], freqs[None, :, :]), dim = -1)
|
| 60 |
+
|
| 61 |
+
freqs_cos = freqs.cos().view(-1, freqs.shape[-1])
|
| 62 |
+
freqs_sin = freqs.sin().view(-1, freqs.shape[-1])
|
| 63 |
+
|
| 64 |
+
self.patch_dropout = patch_dropout
|
| 65 |
+
|
| 66 |
+
self.register_buffer("freqs_cos", freqs_cos)
|
| 67 |
+
self.register_buffer("freqs_sin", freqs_sin)
|
| 68 |
+
|
| 69 |
+
logging.info(f'Shape of rope freq: {self.freqs_cos.shape}')
|
| 70 |
+
|
| 71 |
+
def forward(self, t, patch_indices_keep=None):
|
| 72 |
+
if patch_indices_keep is not None:
|
| 73 |
+
batch = t.size()[0]
|
| 74 |
+
batch_indices = torch.arange(batch)
|
| 75 |
+
batch_indices = batch_indices[..., None]
|
| 76 |
+
|
| 77 |
+
freqs_cos = repeat(self.freqs_cos, 'i j -> n i m j', n=t.shape[0], m=t.shape[1])
|
| 78 |
+
freqs_sin = repeat(self.freqs_sin, 'i j -> n i m j', n=t.shape[0], m=t.shape[1])
|
| 79 |
+
|
| 80 |
+
freqs_cos = freqs_cos[batch_indices, patch_indices_keep]
|
| 81 |
+
freqs_cos = rearrange(freqs_cos, 'n i m j -> n m i j')
|
| 82 |
+
freqs_sin = freqs_sin[batch_indices, patch_indices_keep]
|
| 83 |
+
freqs_sin = rearrange(freqs_sin, 'n i m j -> n m i j')
|
| 84 |
+
|
| 85 |
+
return t * freqs_cos + rotate_half(t) * freqs_sin
|
| 86 |
+
|
| 87 |
+
return t * self.freqs_cos + rotate_half(t) * self.freqs_sin
|
| 88 |
+
|
| 89 |
+
import torch.nn as nn
|
| 90 |
+
import os
|
| 91 |
+
from dataclasses import dataclass
|
| 92 |
+
from typing import Optional, Tuple, Union
|
| 93 |
+
from functools import partial
|
| 94 |
+
|
| 95 |
+
import numpy as np
|
| 96 |
+
import torch
|
| 97 |
+
import torch.nn.functional as F
|
| 98 |
+
from torch import nn
|
| 99 |
+
|
| 100 |
+
# --------------------------------------------------------
|
| 101 |
+
# Adapted from https://github.com/microsoft/unilm/tree/master/beit
|
| 102 |
+
# --------------------------------------------------------
|
| 103 |
+
import math
|
| 104 |
+
import os
|
| 105 |
+
from functools import partial
|
| 106 |
+
import torch
|
| 107 |
+
import torch.nn as nn
|
| 108 |
+
import torch.nn.functional as F
|
| 109 |
+
import logging
|
| 110 |
+
try:
|
| 111 |
+
from timm.models.layers import drop_path, to_2tuple, trunc_normal_
|
| 112 |
+
except:
|
| 113 |
+
from timm.layers import drop_path, to_2tuple, trunc_normal_
|
| 114 |
+
|
| 115 |
+
class PatchDropout(nn.Module):
|
| 116 |
+
"""
|
| 117 |
+
https://arxiv.org/abs/2212.00794
|
| 118 |
+
"""
|
| 119 |
+
|
| 120 |
+
def __init__(self, prob, exclude_first_token=True):
|
| 121 |
+
super().__init__()
|
| 122 |
+
assert 0 <= prob < 1.
|
| 123 |
+
self.prob = prob
|
| 124 |
+
self.exclude_first_token = exclude_first_token # exclude CLS token
|
| 125 |
+
logging.info(f"os.getenv('RoPE')={os.getenv('RoPE')}")
|
| 126 |
+
|
| 127 |
+
def forward(self, x):
|
| 128 |
+
if not self.training or self.prob == 0.:
|
| 129 |
+
return x
|
| 130 |
+
|
| 131 |
+
if self.exclude_first_token:
|
| 132 |
+
cls_tokens, x = x[:, :1], x[:, 1:]
|
| 133 |
+
else:
|
| 134 |
+
cls_tokens = torch.jit.annotate(torch.Tensor, x[:, :1])
|
| 135 |
+
|
| 136 |
+
batch = x.size()[0]
|
| 137 |
+
num_tokens = x.size()[1]
|
| 138 |
+
|
| 139 |
+
batch_indices = torch.arange(batch)
|
| 140 |
+
batch_indices = batch_indices[..., None]
|
| 141 |
+
|
| 142 |
+
keep_prob = 1 - self.prob
|
| 143 |
+
num_patches_keep = max(1, int(num_tokens * keep_prob))
|
| 144 |
+
|
| 145 |
+
rand = torch.randn(batch, num_tokens)
|
| 146 |
+
patch_indices_keep = rand.topk(num_patches_keep, dim=-1).indices
|
| 147 |
+
|
| 148 |
+
x = x[batch_indices, patch_indices_keep]
|
| 149 |
+
|
| 150 |
+
if self.exclude_first_token:
|
| 151 |
+
x = torch.cat((cls_tokens, x), dim=1)
|
| 152 |
+
|
| 153 |
+
if self.training and os.getenv('RoPE') == '1':
|
| 154 |
+
return x, patch_indices_keep
|
| 155 |
+
|
| 156 |
+
return x
|
| 157 |
+
|
| 158 |
+
if os.getenv('ENV_TYPE') == 'deepspeed':
|
| 159 |
+
try:
|
| 160 |
+
from deepspeed.runtime.activation_checkpointing.checkpointing import checkpoint
|
| 161 |
+
except:
|
| 162 |
+
from torch.utils.checkpoint import checkpoint
|
| 163 |
+
else:
|
| 164 |
+
from torch.utils.checkpoint import checkpoint
|
| 165 |
+
|
| 166 |
+
import xformers.ops as xops
|
| 167 |
+
|
| 168 |
+
class DropPath(nn.Module):
|
| 169 |
+
"""Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks).
|
| 170 |
+
"""
|
| 171 |
+
def __init__(self, drop_prob=None):
|
| 172 |
+
super(DropPath, self).__init__()
|
| 173 |
+
self.drop_prob = drop_prob
|
| 174 |
+
|
| 175 |
+
def forward(self, x):
|
| 176 |
+
return drop_path(x, self.drop_prob, self.training)
|
| 177 |
+
|
| 178 |
+
def extra_repr(self) -> str:
|
| 179 |
+
return 'p={}'.format(self.drop_prob)
|
| 180 |
+
|
| 181 |
+
|
| 182 |
+
class Mlp(nn.Module):
|
| 183 |
+
def __init__(
|
| 184 |
+
self,
|
| 185 |
+
in_features,
|
| 186 |
+
hidden_features=None,
|
| 187 |
+
out_features=None,
|
| 188 |
+
act_layer=nn.GELU,
|
| 189 |
+
norm_layer=nn.LayerNorm,
|
| 190 |
+
drop=0.,
|
| 191 |
+
subln=False,
|
| 192 |
+
|
| 193 |
+
):
|
| 194 |
+
super().__init__()
|
| 195 |
+
out_features = out_features or in_features
|
| 196 |
+
hidden_features = hidden_features or in_features
|
| 197 |
+
self.fc1 = nn.Linear(in_features, hidden_features)
|
| 198 |
+
self.act = act_layer()
|
| 199 |
+
|
| 200 |
+
self.ffn_ln = norm_layer(hidden_features) if subln else nn.Identity()
|
| 201 |
+
|
| 202 |
+
self.fc2 = nn.Linear(hidden_features, out_features)
|
| 203 |
+
self.drop = nn.Dropout(drop)
|
| 204 |
+
|
| 205 |
+
def forward(self, x):
|
| 206 |
+
x = self.fc1(x)
|
| 207 |
+
x = self.act(x)
|
| 208 |
+
# x = self.drop(x)
|
| 209 |
+
# commit this for the orignal BERT implement
|
| 210 |
+
x = self.ffn_ln(x)
|
| 211 |
+
|
| 212 |
+
x = self.fc2(x)
|
| 213 |
+
x = self.drop(x)
|
| 214 |
+
return x
|
| 215 |
+
|
| 216 |
+
class SwiGLU(nn.Module):
|
| 217 |
+
def __init__(self, in_features, hidden_features=None, out_features=None, act_layer=nn.SiLU, drop=0.,
|
| 218 |
+
norm_layer=nn.LayerNorm, subln=False):
|
| 219 |
+
super().__init__()
|
| 220 |
+
out_features = out_features or in_features
|
| 221 |
+
hidden_features = hidden_features or in_features
|
| 222 |
+
|
| 223 |
+
self.w1 = nn.Linear(in_features, hidden_features)
|
| 224 |
+
self.w2 = nn.Linear(in_features, hidden_features)
|
| 225 |
+
|
| 226 |
+
self.act = act_layer()
|
| 227 |
+
self.ffn_ln = norm_layer(hidden_features) if subln else nn.Identity()
|
| 228 |
+
self.w3 = nn.Linear(hidden_features, out_features)
|
| 229 |
+
|
| 230 |
+
self.drop = nn.Dropout(drop)
|
| 231 |
+
|
| 232 |
+
def forward(self, x):
|
| 233 |
+
x1 = self.w1(x)
|
| 234 |
+
x2 = self.w2(x)
|
| 235 |
+
hidden = self.act(x1) * x2
|
| 236 |
+
x = self.ffn_ln(hidden)
|
| 237 |
+
x = self.w3(x)
|
| 238 |
+
x = self.drop(x)
|
| 239 |
+
return x
|
| 240 |
+
|
| 241 |
+
class Attention(nn.Module):
|
| 242 |
+
def __init__(
|
| 243 |
+
self, dim, num_heads=8, qkv_bias=False, qk_scale=None, attn_drop=0.,
|
| 244 |
+
proj_drop=0., window_size=None, attn_head_dim=None, xattn=False, rope=None, subln=False, norm_layer=nn.LayerNorm):
|
| 245 |
+
super().__init__()
|
| 246 |
+
self.num_heads = num_heads
|
| 247 |
+
head_dim = dim // num_heads
|
| 248 |
+
if attn_head_dim is not None:
|
| 249 |
+
head_dim = attn_head_dim
|
| 250 |
+
all_head_dim = head_dim * self.num_heads
|
| 251 |
+
self.scale = qk_scale or head_dim ** -0.5
|
| 252 |
+
|
| 253 |
+
self.subln = subln
|
| 254 |
+
if self.subln:
|
| 255 |
+
self.q_proj = nn.Linear(dim, all_head_dim, bias=False)
|
| 256 |
+
self.k_proj = nn.Linear(dim, all_head_dim, bias=False)
|
| 257 |
+
self.v_proj = nn.Linear(dim, all_head_dim, bias=False)
|
| 258 |
+
else:
|
| 259 |
+
self.qkv = nn.Linear(dim, all_head_dim * 3, bias=False)
|
| 260 |
+
|
| 261 |
+
if qkv_bias:
|
| 262 |
+
self.q_bias = nn.Parameter(torch.zeros(all_head_dim))
|
| 263 |
+
self.v_bias = nn.Parameter(torch.zeros(all_head_dim))
|
| 264 |
+
else:
|
| 265 |
+
self.q_bias = None
|
| 266 |
+
self.v_bias = None
|
| 267 |
+
|
| 268 |
+
if window_size:
|
| 269 |
+
self.window_size = window_size
|
| 270 |
+
self.num_relative_distance = (2 * window_size[0] - 1) * (2 * window_size[1] - 1) + 3
|
| 271 |
+
self.relative_position_bias_table = nn.Parameter(
|
| 272 |
+
torch.zeros(self.num_relative_distance, num_heads)) # 2*Wh-1 * 2*Ww-1, nH
|
| 273 |
+
# cls to token & token 2 cls & cls to cls
|
| 274 |
+
|
| 275 |
+
# get pair-wise relative position index for each token inside the window
|
| 276 |
+
coords_h = torch.arange(window_size[0])
|
| 277 |
+
coords_w = torch.arange(window_size[1])
|
| 278 |
+
coords = torch.stack(torch.meshgrid([coords_h, coords_w])) # 2, Wh, Ww
|
| 279 |
+
coords_flatten = torch.flatten(coords, 1) # 2, Wh*Ww
|
| 280 |
+
relative_coords = coords_flatten[:, :, None] - coords_flatten[:, None, :] # 2, Wh*Ww, Wh*Ww
|
| 281 |
+
relative_coords = relative_coords.permute(1, 2, 0).contiguous() # Wh*Ww, Wh*Ww, 2
|
| 282 |
+
relative_coords[:, :, 0] += window_size[0] - 1 # shift to start from 0
|
| 283 |
+
relative_coords[:, :, 1] += window_size[1] - 1
|
| 284 |
+
relative_coords[:, :, 0] *= 2 * window_size[1] - 1
|
| 285 |
+
relative_position_index = \
|
| 286 |
+
torch.zeros(size=(window_size[0] * window_size[1] + 1, ) * 2, dtype=relative_coords.dtype)
|
| 287 |
+
relative_position_index[1:, 1:] = relative_coords.sum(-1) # Wh*Ww, Wh*Ww
|
| 288 |
+
relative_position_index[0, 0:] = self.num_relative_distance - 3
|
| 289 |
+
relative_position_index[0:, 0] = self.num_relative_distance - 2
|
| 290 |
+
relative_position_index[0, 0] = self.num_relative_distance - 1
|
| 291 |
+
|
| 292 |
+
self.register_buffer("relative_position_index", relative_position_index)
|
| 293 |
+
else:
|
| 294 |
+
self.window_size = None
|
| 295 |
+
self.relative_position_bias_table = None
|
| 296 |
+
self.relative_position_index = None
|
| 297 |
+
|
| 298 |
+
self.attn_drop = nn.Dropout(attn_drop)
|
| 299 |
+
self.inner_attn_ln = norm_layer(all_head_dim) if subln else nn.Identity()
|
| 300 |
+
# self.proj = nn.Linear(all_head_dim, all_head_dim)
|
| 301 |
+
self.proj = nn.Linear(all_head_dim, dim)
|
| 302 |
+
self.proj_drop = nn.Dropout(proj_drop)
|
| 303 |
+
self.xattn = xattn
|
| 304 |
+
self.xattn_drop = attn_drop
|
| 305 |
+
|
| 306 |
+
self.rope = rope
|
| 307 |
+
|
| 308 |
+
def forward(self, x, rel_pos_bias=None, attn_mask=None):
|
| 309 |
+
B, N, C = x.shape
|
| 310 |
+
if self.subln:
|
| 311 |
+
if self.q_proj.weight.dtype == torch.uint8:
|
| 312 |
+
import bitsandbytes as bnb
|
| 313 |
+
q = bnb.matmul_4bit(x, self.q_proj.weight.t(), bias=self.q_bias, quant_state=self.q_proj.weight.quant_state)
|
| 314 |
+
k = bnb.matmul_4bit(x, self.k_proj.weight.t(), bias=None, quant_state=self.k_proj.weight.quant_state)
|
| 315 |
+
v = bnb.matmul_4bit(x, self.v_proj.weight.t(), bias=self.v_bias, quant_state=self.v_proj.weight.quant_state)
|
| 316 |
+
else:
|
| 317 |
+
q = F.linear(input=x, weight=self.q_proj.weight, bias=self.q_bias)
|
| 318 |
+
k = F.linear(input=x, weight=self.k_proj.weight, bias=None)
|
| 319 |
+
v = F.linear(input=x, weight=self.v_proj.weight, bias=self.v_bias)
|
| 320 |
+
|
| 321 |
+
q = q.reshape(B, N, self.num_heads, -1).permute(0, 2, 1, 3) # B, num_heads, N, C
|
| 322 |
+
k = k.reshape(B, N, self.num_heads, -1).permute(0, 2, 1, 3)
|
| 323 |
+
v = v.reshape(B, N, self.num_heads, -1).permute(0, 2, 1, 3)
|
| 324 |
+
else:
|
| 325 |
+
|
| 326 |
+
qkv_bias = None
|
| 327 |
+
if self.q_bias is not None:
|
| 328 |
+
qkv_bias = torch.cat((self.q_bias, torch.zeros_like(self.v_bias, requires_grad=False), self.v_bias))
|
| 329 |
+
|
| 330 |
+
qkv = F.linear(input=x, weight=self.qkv.weight, bias=qkv_bias)
|
| 331 |
+
qkv = qkv.reshape(B, N, 3, self.num_heads, -1).permute(2, 0, 3, 1, 4) # 3, B, num_heads, N, C
|
| 332 |
+
q, k, v = qkv[0], qkv[1], qkv[2]
|
| 333 |
+
|
| 334 |
+
if self.rope:
|
| 335 |
+
# slightly fast impl
|
| 336 |
+
q_t = q[:, :, 1:, :]
|
| 337 |
+
ro_q_t = self.rope(q_t)
|
| 338 |
+
q = torch.cat((q[:, :, :1, :], ro_q_t), -2).type_as(v)
|
| 339 |
+
|
| 340 |
+
k_t = k[:, :, 1:, :]
|
| 341 |
+
ro_k_t = self.rope(k_t)
|
| 342 |
+
k = torch.cat((k[:, :, :1, :], ro_k_t), -2).type_as(v)
|
| 343 |
+
|
| 344 |
+
if self.xattn:
|
| 345 |
+
q = q.permute(0, 2, 1, 3) # B, num_heads, N, C -> B, N, num_heads, C
|
| 346 |
+
k = k.permute(0, 2, 1, 3)
|
| 347 |
+
v = v.permute(0, 2, 1, 3)
|
| 348 |
+
|
| 349 |
+
x = xops.memory_efficient_attention(
|
| 350 |
+
q, k, v,
|
| 351 |
+
p=self.xattn_drop,
|
| 352 |
+
scale=self.scale,
|
| 353 |
+
)
|
| 354 |
+
x = x.reshape(B, N, -1)
|
| 355 |
+
x = self.inner_attn_ln(x)
|
| 356 |
+
x = self.proj(x)
|
| 357 |
+
x = self.proj_drop(x)
|
| 358 |
+
else:
|
| 359 |
+
q = q * self.scale
|
| 360 |
+
attn = (q @ k.transpose(-2, -1))
|
| 361 |
+
|
| 362 |
+
if self.relative_position_bias_table is not None:
|
| 363 |
+
relative_position_bias = \
|
| 364 |
+
self.relative_position_bias_table[self.relative_position_index.view(-1)].view(
|
| 365 |
+
self.window_size[0] * self.window_size[1] + 1,
|
| 366 |
+
self.window_size[0] * self.window_size[1] + 1, -1) # Wh*Ww,Wh*Ww,nH
|
| 367 |
+
relative_position_bias = relative_position_bias.permute(2, 0, 1).contiguous() # nH, Wh*Ww, Wh*Ww
|
| 368 |
+
attn = attn + relative_position_bias.unsqueeze(0).type_as(attn)
|
| 369 |
+
|
| 370 |
+
if rel_pos_bias is not None:
|
| 371 |
+
attn = attn + rel_pos_bias.type_as(attn)
|
| 372 |
+
|
| 373 |
+
if attn_mask is not None:
|
| 374 |
+
attn_mask = attn_mask.bool()
|
| 375 |
+
attn = attn.masked_fill(~attn_mask[:, None, None, :], float("-inf"))
|
| 376 |
+
|
| 377 |
+
attn = attn.softmax(dim=-1)
|
| 378 |
+
attn = self.attn_drop(attn)
|
| 379 |
+
|
| 380 |
+
x = (attn @ v).transpose(1, 2).reshape(B, N, -1)
|
| 381 |
+
x = self.inner_attn_ln(x)
|
| 382 |
+
x = self.proj(x)
|
| 383 |
+
x = self.proj_drop(x)
|
| 384 |
+
return x
|
| 385 |
+
|
| 386 |
+
|
| 387 |
+
class Block(nn.Module):
|
| 388 |
+
|
| 389 |
+
def __init__(self, dim, num_heads, mlp_ratio=4., qkv_bias=False, qk_scale=None, drop=0., attn_drop=0.,
|
| 390 |
+
drop_path=0., init_values=None, act_layer=nn.GELU, norm_layer=nn.LayerNorm,
|
| 391 |
+
window_size=None, attn_head_dim=None, xattn=False, rope=None, postnorm=False,
|
| 392 |
+
subln=False, naiveswiglu=False):
|
| 393 |
+
super().__init__()
|
| 394 |
+
self.norm1 = norm_layer(dim)
|
| 395 |
+
self.attn = Attention(
|
| 396 |
+
dim, num_heads=num_heads, qkv_bias=qkv_bias, qk_scale=qk_scale,
|
| 397 |
+
attn_drop=attn_drop, proj_drop=drop, window_size=window_size, attn_head_dim=attn_head_dim,
|
| 398 |
+
xattn=xattn, rope=rope, subln=subln, norm_layer=norm_layer)
|
| 399 |
+
# NOTE: drop path for stochastic depth, we shall see if this is better than dropout here
|
| 400 |
+
self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity()
|
| 401 |
+
self.norm2 = norm_layer(dim)
|
| 402 |
+
mlp_hidden_dim = int(dim * mlp_ratio)
|
| 403 |
+
|
| 404 |
+
if naiveswiglu:
|
| 405 |
+
self.mlp = SwiGLU(
|
| 406 |
+
in_features=dim,
|
| 407 |
+
hidden_features=mlp_hidden_dim,
|
| 408 |
+
subln=subln,
|
| 409 |
+
norm_layer=norm_layer,
|
| 410 |
+
)
|
| 411 |
+
else:
|
| 412 |
+
self.mlp = Mlp(
|
| 413 |
+
in_features=dim,
|
| 414 |
+
hidden_features=mlp_hidden_dim,
|
| 415 |
+
act_layer=act_layer,
|
| 416 |
+
subln=subln,
|
| 417 |
+
drop=drop
|
| 418 |
+
)
|
| 419 |
+
|
| 420 |
+
if init_values is not None and init_values > 0:
|
| 421 |
+
self.gamma_1 = nn.Parameter(init_values * torch.ones((dim)),requires_grad=True)
|
| 422 |
+
self.gamma_2 = nn.Parameter(init_values * torch.ones((dim)),requires_grad=True)
|
| 423 |
+
else:
|
| 424 |
+
self.gamma_1, self.gamma_2 = None, None
|
| 425 |
+
|
| 426 |
+
self.postnorm = postnorm
|
| 427 |
+
|
| 428 |
+
def forward(self, x, rel_pos_bias=None, attn_mask=None):
|
| 429 |
+
if self.gamma_1 is None:
|
| 430 |
+
if self.postnorm:
|
| 431 |
+
x = x + self.drop_path(self.norm1(self.attn(x, rel_pos_bias=rel_pos_bias, attn_mask=attn_mask)))
|
| 432 |
+
x = x + self.drop_path(self.norm2(self.mlp(x)))
|
| 433 |
+
else:
|
| 434 |
+
x = x + self.drop_path(self.attn(self.norm1(x), rel_pos_bias=rel_pos_bias, attn_mask=attn_mask))
|
| 435 |
+
x = x + self.drop_path(self.mlp(self.norm2(x)))
|
| 436 |
+
else:
|
| 437 |
+
if self.postnorm:
|
| 438 |
+
x = x + self.drop_path(self.gamma_1 * self.norm1(self.attn(x, rel_pos_bias=rel_pos_bias, attn_mask=attn_mask)))
|
| 439 |
+
x = x + self.drop_path(self.gamma_2 * self.norm2(self.mlp(x)))
|
| 440 |
+
else:
|
| 441 |
+
x = x + self.drop_path(self.gamma_1 * self.attn(self.norm1(x), rel_pos_bias=rel_pos_bias, attn_mask=attn_mask))
|
| 442 |
+
x = x + self.drop_path(self.gamma_2 * self.mlp(self.norm2(x)))
|
| 443 |
+
return x
|
| 444 |
+
|
| 445 |
+
|
| 446 |
+
class PatchEmbed(nn.Module):
|
| 447 |
+
""" Image to Patch Embedding
|
| 448 |
+
"""
|
| 449 |
+
def __init__(self, img_size=224, patch_size=16, in_chans=3, embed_dim=768):
|
| 450 |
+
super().__init__()
|
| 451 |
+
img_size = to_2tuple(img_size)
|
| 452 |
+
patch_size = to_2tuple(patch_size)
|
| 453 |
+
num_patches = (img_size[1] // patch_size[1]) * (img_size[0] // patch_size[0])
|
| 454 |
+
self.patch_shape = (img_size[0] // patch_size[0], img_size[1] // patch_size[1])
|
| 455 |
+
self.img_size = img_size
|
| 456 |
+
self.patch_size = patch_size
|
| 457 |
+
self.num_patches = num_patches
|
| 458 |
+
|
| 459 |
+
self.proj = nn.Conv2d(in_chans, embed_dim, kernel_size=patch_size, stride=patch_size)
|
| 460 |
+
|
| 461 |
+
def forward(self, x, **kwargs):
|
| 462 |
+
B, C, H, W = x.shape
|
| 463 |
+
# FIXME look at relaxing size constraints
|
| 464 |
+
assert H == self.img_size[0] and W == self.img_size[1], \
|
| 465 |
+
f"Input image size ({H}*{W}) doesn't match model ({self.img_size[0]}*{self.img_size[1]})."
|
| 466 |
+
x = self.proj(x).flatten(2).transpose(1, 2)
|
| 467 |
+
return x
|
| 468 |
+
|
| 469 |
+
|
| 470 |
+
class RelativePositionBias(nn.Module):
|
| 471 |
+
|
| 472 |
+
def __init__(self, window_size, num_heads):
|
| 473 |
+
super().__init__()
|
| 474 |
+
self.window_size = window_size
|
| 475 |
+
self.num_relative_distance = (2 * window_size[0] - 1) * (2 * window_size[1] - 1) + 3
|
| 476 |
+
self.relative_position_bias_table = nn.Parameter(
|
| 477 |
+
torch.zeros(self.num_relative_distance, num_heads)) # 2*Wh-1 * 2*Ww-1, nH
|
| 478 |
+
# cls to token & token 2 cls & cls to cls
|
| 479 |
+
|
| 480 |
+
# get pair-wise relative position index for each token inside the window
|
| 481 |
+
coords_h = torch.arange(window_size[0])
|
| 482 |
+
coords_w = torch.arange(window_size[1])
|
| 483 |
+
coords = torch.stack(torch.meshgrid([coords_h, coords_w])) # 2, Wh, Ww
|
| 484 |
+
coords_flatten = torch.flatten(coords, 1) # 2, Wh*Ww
|
| 485 |
+
relative_coords = coords_flatten[:, :, None] - coords_flatten[:, None, :] # 2, Wh*Ww, Wh*Ww
|
| 486 |
+
relative_coords = relative_coords.permute(1, 2, 0).contiguous() # Wh*Ww, Wh*Ww, 2
|
| 487 |
+
relative_coords[:, :, 0] += window_size[0] - 1 # shift to start from 0
|
| 488 |
+
relative_coords[:, :, 1] += window_size[1] - 1
|
| 489 |
+
relative_coords[:, :, 0] *= 2 * window_size[1] - 1
|
| 490 |
+
relative_position_index = \
|
| 491 |
+
torch.zeros(size=(window_size[0] * window_size[1] + 1,) * 2, dtype=relative_coords.dtype)
|
| 492 |
+
relative_position_index[1:, 1:] = relative_coords.sum(-1) # Wh*Ww, Wh*Ww
|
| 493 |
+
relative_position_index[0, 0:] = self.num_relative_distance - 3
|
| 494 |
+
relative_position_index[0:, 0] = self.num_relative_distance - 2
|
| 495 |
+
relative_position_index[0, 0] = self.num_relative_distance - 1
|
| 496 |
+
|
| 497 |
+
self.register_buffer("relative_position_index", relative_position_index)
|
| 498 |
+
|
| 499 |
+
def forward(self):
|
| 500 |
+
relative_position_bias = \
|
| 501 |
+
self.relative_position_bias_table[self.relative_position_index.view(-1)].view(
|
| 502 |
+
self.window_size[0] * self.window_size[1] + 1,
|
| 503 |
+
self.window_size[0] * self.window_size[1] + 1, -1) # Wh*Ww,Wh*Ww,nH
|
| 504 |
+
return relative_position_bias.permute(2, 0, 1).contiguous() # nH, Wh*Ww, Wh*Ww
|
| 505 |
+
|
| 506 |
+
|
| 507 |
+
class EVAVisionTransformer(nn.Module):
|
| 508 |
+
""" Vision Transformer with support for patch or hybrid CNN input stage
|
| 509 |
+
"""
|
| 510 |
+
def __init__(self, img_size=224, patch_size=16, in_chans=3, num_classes=1000, embed_dim=768, depth=12,
|
| 511 |
+
num_heads=12, mlp_ratio=4., qkv_bias=False, qk_scale=None, drop_rate=0., attn_drop_rate=0.,
|
| 512 |
+
drop_path_rate=0., norm_layer=nn.LayerNorm, init_values=None, patch_dropout=0.,
|
| 513 |
+
use_abs_pos_emb=True, use_rel_pos_bias=False, use_shared_rel_pos_bias=False, rope=False,
|
| 514 |
+
use_mean_pooling=True, init_scale=0.001, grad_checkpointing=False, xattn=False, postnorm=False,
|
| 515 |
+
pt_hw_seq_len=16, intp_freq=False, naiveswiglu=False, subln=False):
|
| 516 |
+
super().__init__()
|
| 517 |
+
self.image_size = img_size
|
| 518 |
+
self.num_classes = num_classes
|
| 519 |
+
self.num_features = self.embed_dim = embed_dim # num_features for consistency with other models
|
| 520 |
+
|
| 521 |
+
self.patch_embed = PatchEmbed(
|
| 522 |
+
img_size=img_size, patch_size=patch_size, in_chans=in_chans, embed_dim=embed_dim)
|
| 523 |
+
num_patches = self.patch_embed.num_patches
|
| 524 |
+
|
| 525 |
+
self.cls_token = nn.Parameter(torch.zeros(1, 1, embed_dim))
|
| 526 |
+
# self.mask_token = nn.Parameter(torch.zeros(1, 1, embed_dim))
|
| 527 |
+
if use_abs_pos_emb:
|
| 528 |
+
self.pos_embed = nn.Parameter(torch.zeros(1, num_patches + 1, embed_dim))
|
| 529 |
+
else:
|
| 530 |
+
self.pos_embed = None
|
| 531 |
+
self.pos_drop = nn.Dropout(p=drop_rate)
|
| 532 |
+
|
| 533 |
+
if use_shared_rel_pos_bias:
|
| 534 |
+
self.rel_pos_bias = RelativePositionBias(window_size=self.patch_embed.patch_shape, num_heads=num_heads)
|
| 535 |
+
else:
|
| 536 |
+
self.rel_pos_bias = None
|
| 537 |
+
|
| 538 |
+
if rope:
|
| 539 |
+
half_head_dim = embed_dim // num_heads // 2
|
| 540 |
+
hw_seq_len = img_size // patch_size
|
| 541 |
+
self.rope = VisionRotaryEmbeddingFast(
|
| 542 |
+
dim=half_head_dim,
|
| 543 |
+
pt_seq_len=pt_hw_seq_len,
|
| 544 |
+
ft_seq_len=hw_seq_len if intp_freq else None,
|
| 545 |
+
# patch_dropout=patch_dropout
|
| 546 |
+
)
|
| 547 |
+
else:
|
| 548 |
+
self.rope = None
|
| 549 |
+
|
| 550 |
+
self.naiveswiglu = naiveswiglu
|
| 551 |
+
|
| 552 |
+
dpr = [x.item() for x in torch.linspace(0, drop_path_rate, depth)] # stochastic depth decay rule
|
| 553 |
+
self.use_rel_pos_bias = use_rel_pos_bias
|
| 554 |
+
self.blocks = nn.ModuleList([
|
| 555 |
+
Block(
|
| 556 |
+
dim=embed_dim, num_heads=num_heads, mlp_ratio=mlp_ratio, qkv_bias=qkv_bias, qk_scale=qk_scale,
|
| 557 |
+
drop=drop_rate, attn_drop=attn_drop_rate, drop_path=dpr[i], norm_layer=norm_layer,
|
| 558 |
+
init_values=init_values, window_size=self.patch_embed.patch_shape if use_rel_pos_bias else None,
|
| 559 |
+
xattn=xattn, rope=self.rope, postnorm=postnorm, subln=subln, naiveswiglu=naiveswiglu)
|
| 560 |
+
for i in range(depth)])
|
| 561 |
+
self.norm = nn.Identity() if use_mean_pooling else norm_layer(embed_dim)
|
| 562 |
+
self.fc_norm = norm_layer(embed_dim) if use_mean_pooling else None
|
| 563 |
+
self.head = nn.Linear(embed_dim, num_classes) if num_classes > 0 else nn.Identity()
|
| 564 |
+
|
| 565 |
+
if self.pos_embed is not None:
|
| 566 |
+
trunc_normal_(self.pos_embed, std=.02)
|
| 567 |
+
|
| 568 |
+
trunc_normal_(self.cls_token, std=.02)
|
| 569 |
+
# trunc_normal_(self.mask_token, std=.02)
|
| 570 |
+
|
| 571 |
+
self.apply(self._init_weights)
|
| 572 |
+
self.fix_init_weight()
|
| 573 |
+
|
| 574 |
+
if isinstance(self.head, nn.Linear):
|
| 575 |
+
trunc_normal_(self.head.weight, std=.02)
|
| 576 |
+
self.head.weight.data.mul_(init_scale)
|
| 577 |
+
self.head.bias.data.mul_(init_scale)
|
| 578 |
+
|
| 579 |
+
# setting a patch_dropout of 0. would mean it is disabled and this function would be the identity fn
|
| 580 |
+
self.patch_dropout = PatchDropout(patch_dropout) if patch_dropout > 0. else nn.Identity()
|
| 581 |
+
|
| 582 |
+
self.grad_checkpointing = grad_checkpointing
|
| 583 |
+
|
| 584 |
+
def fix_init_weight(self):
|
| 585 |
+
def rescale(param, layer_id):
|
| 586 |
+
param.div_(math.sqrt(2.0 * layer_id))
|
| 587 |
+
|
| 588 |
+
for layer_id, layer in enumerate(self.blocks):
|
| 589 |
+
rescale(layer.attn.proj.weight.data, layer_id + 1)
|
| 590 |
+
if self.naiveswiglu:
|
| 591 |
+
rescale(layer.mlp.w3.weight.data, layer_id + 1)
|
| 592 |
+
else:
|
| 593 |
+
rescale(layer.mlp.fc2.weight.data, layer_id + 1)
|
| 594 |
+
|
| 595 |
+
def get_cast_dtype(self) -> torch.dtype:
|
| 596 |
+
return self.blocks[0].mlp.fc2.weight.dtype
|
| 597 |
+
|
| 598 |
+
def _init_weights(self, m):
|
| 599 |
+
if isinstance(m, nn.Linear):
|
| 600 |
+
trunc_normal_(m.weight, std=.02)
|
| 601 |
+
if m.bias is not None:
|
| 602 |
+
nn.init.constant_(m.bias, 0)
|
| 603 |
+
elif isinstance(m, nn.LayerNorm):
|
| 604 |
+
nn.init.constant_(m.bias, 0)
|
| 605 |
+
nn.init.constant_(m.weight, 1.0)
|
| 606 |
+
|
| 607 |
+
def get_num_layers(self):
|
| 608 |
+
return len(self.blocks)
|
| 609 |
+
|
| 610 |
+
def lock(self, unlocked_groups=0, freeze_bn_stats=False):
|
| 611 |
+
assert unlocked_groups == 0, 'partial locking not currently supported for this model'
|
| 612 |
+
for param in self.parameters():
|
| 613 |
+
param.requires_grad = False
|
| 614 |
+
|
| 615 |
+
@torch.jit.ignore
|
| 616 |
+
def set_grad_checkpointing(self, enable=True):
|
| 617 |
+
self.grad_checkpointing = enable
|
| 618 |
+
|
| 619 |
+
@torch.jit.ignore
|
| 620 |
+
def no_weight_decay(self):
|
| 621 |
+
return {'pos_embed', 'cls_token'}
|
| 622 |
+
|
| 623 |
+
def get_classifier(self):
|
| 624 |
+
return self.head
|
| 625 |
+
|
| 626 |
+
def reset_classifier(self, num_classes, global_pool=''):
|
| 627 |
+
self.num_classes = num_classes
|
| 628 |
+
self.head = nn.Linear(self.embed_dim, num_classes) if num_classes > 0 else nn.Identity()
|
| 629 |
+
|
| 630 |
+
def forward_features(self, x, return_all_features=False):
|
| 631 |
+
|
| 632 |
+
x = self.patch_embed(x)
|
| 633 |
+
batch_size, seq_len, _ = x.size()
|
| 634 |
+
|
| 635 |
+
cls_tokens = self.cls_token.expand(batch_size, -1, -1) # stole cls_tokens impl from Phil Wang, thanks
|
| 636 |
+
x = torch.cat((cls_tokens, x), dim=1)
|
| 637 |
+
if self.pos_embed is not None:
|
| 638 |
+
x = x + self.pos_embed
|
| 639 |
+
x = self.pos_drop(x)
|
| 640 |
+
|
| 641 |
+
# a patch_dropout of 0. would mean it is disabled and this function would do nothing but return what was passed in
|
| 642 |
+
if os.getenv('RoPE') == '1':
|
| 643 |
+
if self.training and not isinstance(self.patch_dropout, nn.Identity):
|
| 644 |
+
x, patch_indices_keep = self.patch_dropout(x)
|
| 645 |
+
self.rope.forward = partial(self.rope.forward, patch_indices_keep=patch_indices_keep)
|
| 646 |
+
else:
|
| 647 |
+
self.rope.forward = partial(self.rope.forward, patch_indices_keep=None)
|
| 648 |
+
x = self.patch_dropout(x)
|
| 649 |
+
else:
|
| 650 |
+
x = self.patch_dropout(x)
|
| 651 |
+
|
| 652 |
+
rel_pos_bias = self.rel_pos_bias() if self.rel_pos_bias is not None else None
|
| 653 |
+
for i, blk in enumerate(self.blocks):
|
| 654 |
+
if i == len(self.blocks)-1:
|
| 655 |
+
continue
|
| 656 |
+
if self.grad_checkpointing:
|
| 657 |
+
x = checkpoint(blk, x, (rel_pos_bias,))
|
| 658 |
+
else:
|
| 659 |
+
x = blk(x, rel_pos_bias=rel_pos_bias)
|
| 660 |
+
|
| 661 |
+
if not return_all_features:
|
| 662 |
+
x = self.norm(x)
|
| 663 |
+
if self.fc_norm is not None:
|
| 664 |
+
return self.fc_norm(x.mean(1))
|
| 665 |
+
else:
|
| 666 |
+
return x[:, 0]
|
| 667 |
+
return x
|
| 668 |
+
|
| 669 |
+
def forward(self, x, return_all_features=False):
|
| 670 |
+
if return_all_features:
|
| 671 |
+
return self.forward_features(x, return_all_features)
|
| 672 |
+
x = self.forward_features(x)
|
| 673 |
+
x = self.head(x)
|
| 674 |
+
return x
|
| 675 |
+
|
| 676 |
+
class LayerNorm(nn.LayerNorm):
|
| 677 |
+
"""Subclass torch's LayerNorm (with cast back to input dtype)."""
|
| 678 |
+
|
| 679 |
+
def forward(self, x: torch.Tensor):
|
| 680 |
+
orig_type = x.dtype
|
| 681 |
+
x = F.layer_norm(x, self.normalized_shape, self.weight, self.bias, self.eps)
|
| 682 |
+
return x.to(orig_type)
|
| 683 |
+
|
| 684 |
+
try:
|
| 685 |
+
from apex.normalization import FusedLayerNorm
|
| 686 |
+
except:
|
| 687 |
+
FusedLayerNorm = LayerNorm
|
| 688 |
+
print("Please 'pip install apex'")
|
| 689 |
+
|
| 690 |
+
|
| 691 |
+
@dataclass
|
| 692 |
+
class CLIPVisionCfg:
|
| 693 |
+
layers: Union[Tuple[int, int, int, int], int] = 12
|
| 694 |
+
width: int = 768
|
| 695 |
+
head_width: int = 64
|
| 696 |
+
mlp_ratio: float = 4.0
|
| 697 |
+
patch_size: int = 16
|
| 698 |
+
image_size: Union[Tuple[int, int], int] = 224
|
| 699 |
+
ls_init_value: Optional[float] = None # layer scale initial value
|
| 700 |
+
patch_dropout: float = 0. # what fraction of patches to dropout during training (0 would mean disabled and no patches dropped) - 0.5 to 0.75 recommended in the paper for optimal results
|
| 701 |
+
global_average_pool: bool = False # whether to global average pool the last embedding layer, instead of using CLS token (https://arxiv.org/abs/2205.01580)
|
| 702 |
+
drop_path_rate: Optional[float] = None # drop path rate
|
| 703 |
+
timm_model_name: str = None # a valid model name overrides layers, width, patch_size
|
| 704 |
+
timm_model_pretrained: bool = False # use (imagenet) pretrained weights for named model
|
| 705 |
+
timm_pool: str = 'avg' # feature pooling for timm model ('abs_attn', 'rot_attn', 'avg', '')
|
| 706 |
+
timm_proj: str = 'linear' # linear projection for timm model output ('linear', 'mlp', '')
|
| 707 |
+
timm_proj_bias: bool = False # enable bias final projection
|
| 708 |
+
eva_model_name: str = None # a valid eva model name overrides layers, width, patch_size
|
| 709 |
+
qkv_bias: bool = True
|
| 710 |
+
fusedLN: bool = False
|
| 711 |
+
xattn: bool = False
|
| 712 |
+
postnorm: bool = False
|
| 713 |
+
rope: bool = False
|
| 714 |
+
pt_hw_seq_len: int = 16 # 224/14
|
| 715 |
+
intp_freq: bool = False
|
| 716 |
+
naiveswiglu: bool = False
|
| 717 |
+
subln: bool = False
|
| 718 |
+
|
| 719 |
+
|
| 720 |
+
def _build_vision_tower(
|
| 721 |
+
embed_dim: int,
|
| 722 |
+
vision_cfg: CLIPVisionCfg
|
| 723 |
+
):
|
| 724 |
+
if isinstance(vision_cfg, dict):
|
| 725 |
+
vision_cfg = CLIPVisionCfg(**vision_cfg)
|
| 726 |
+
|
| 727 |
+
if vision_cfg.eva_model_name:
|
| 728 |
+
vision_heads = vision_cfg.width // vision_cfg.head_width
|
| 729 |
+
norm_layer = LayerNorm
|
| 730 |
+
visual = EVAVisionTransformer(
|
| 731 |
+
img_size=vision_cfg.image_size,
|
| 732 |
+
patch_size=vision_cfg.patch_size,
|
| 733 |
+
num_classes=embed_dim,
|
| 734 |
+
use_mean_pooling=vision_cfg.global_average_pool, #False
|
| 735 |
+
init_values=vision_cfg.ls_init_value,
|
| 736 |
+
patch_dropout=vision_cfg.patch_dropout,
|
| 737 |
+
embed_dim=vision_cfg.width,
|
| 738 |
+
depth=vision_cfg.layers,
|
| 739 |
+
num_heads=vision_heads,
|
| 740 |
+
mlp_ratio=vision_cfg.mlp_ratio,
|
| 741 |
+
qkv_bias=vision_cfg.qkv_bias,
|
| 742 |
+
drop_path_rate=vision_cfg.drop_path_rate,
|
| 743 |
+
norm_layer= partial(FusedLayerNorm, eps=1e-6) if vision_cfg.fusedLN else partial(norm_layer, eps=1e-6),
|
| 744 |
+
xattn=vision_cfg.xattn,
|
| 745 |
+
rope=vision_cfg.rope,
|
| 746 |
+
postnorm=vision_cfg.postnorm,
|
| 747 |
+
pt_hw_seq_len= vision_cfg.pt_hw_seq_len, # 224/14
|
| 748 |
+
intp_freq= vision_cfg.intp_freq,
|
| 749 |
+
naiveswiglu= vision_cfg.naiveswiglu,
|
| 750 |
+
subln= vision_cfg.subln
|
| 751 |
+
)
|
| 752 |
+
|
| 753 |
+
return visual
|
| 754 |
+
|
| 755 |
+
class Eva2LargeEncoder(nn.Module):
|
| 756 |
+
def __init__(self, image_size=224):
|
| 757 |
+
super(Eva2LargeEncoder, self).__init__()
|
| 758 |
+
self.config = {
|
| 759 |
+
"embed_dim": 768,
|
| 760 |
+
"vision_cfg": {
|
| 761 |
+
"image_size": 336,
|
| 762 |
+
"layers": 24,
|
| 763 |
+
"width": 1024,
|
| 764 |
+
"drop_path_rate": 0,
|
| 765 |
+
"head_width": 64,
|
| 766 |
+
"mlp_ratio": 2.6667,
|
| 767 |
+
"patch_size": 14,
|
| 768 |
+
"eva_model_name": "eva-clip-l-14-336",
|
| 769 |
+
"xattn": True,
|
| 770 |
+
"fusedLN": True,
|
| 771 |
+
"rope": True,
|
| 772 |
+
"pt_hw_seq_len": 16,
|
| 773 |
+
"intp_freq": True,
|
| 774 |
+
"naiveswiglu": True,
|
| 775 |
+
"subln": True
|
| 776 |
+
}
|
| 777 |
+
}
|
| 778 |
+
self.config['vision_cfg']['image_size'] = image_size
|
| 779 |
+
|
| 780 |
+
import os
|
| 781 |
+
os.environ['delRoPE'] = '1' # to avoid error in rope params when changing image size
|
| 782 |
+
self.model = _build_vision_tower(**self.config)
|
| 783 |
+
|
| 784 |
+
|
| 785 |
+
def forward(self, images):
|
| 786 |
+
encode = self.model(images, return_all_features=True)[:, 1:, :]
|
| 787 |
+
return encode
|
| 788 |
+
|
| 789 |
+
class CrossVisionModel(nn.Module):
|
| 790 |
+
def __init__(self, config):
|
| 791 |
+
super().__init__()
|
| 792 |
+
self.vit = Eva2LargeEncoder(image_size=config.cross_image_size)
|
| 793 |
+
self.pos_embed = nn.Parameter(torch.zeros((self.vit.config['vision_cfg']['image_size'] // self.vit.config['vision_cfg']['patch_size']) ** 2, self.vit.config['vision_cfg']['width']))
|
| 794 |
+
|
| 795 |
+
def forward(self, images):
|
| 796 |
+
enc = self.vit(images)
|
| 797 |
+
return enc + self.pos_embed.to(enc.device).unsqueeze(0)
|
generation_config.json
ADDED
|
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"_from_model_config": true,
|
| 3 |
+
"bos_token_id": 1,
|
| 4 |
+
"eos_token_id": 2,
|
| 5 |
+
"pad_token_id": 0,
|
| 6 |
+
"transformers_version": "4.37.2"
|
| 7 |
+
}
|
model-00001-of-00008.safetensors
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:6d81cb91da508bb8238b33d1944dbf2519f76a4605d65141394ef3d8716dcaf4
|
| 3 |
+
size 4974579048
|
model-00002-of-00008.safetensors
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:f1186dd0fbe7ec40a5b1f7fe0aa7d468fea51e75ff56d7dbfad001f237902758
|
| 3 |
+
size 4982992616
|
model-00003-of-00008.safetensors
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:a35706a2edc7877b9a1f930541389e426577ed64f61b6922b19728c7b8603538
|
| 3 |
+
size 4982992688
|
model-00004-of-00008.safetensors
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:7b6db15e182aeb847198b93e54061720318819eecc74fbc29b7b7b5a51d41611
|
| 3 |
+
size 4982992688
|
model-00005-of-00008.safetensors
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:79805785c9f9c1490cf5d93b649c03dd37247734714c62d438dc50402e4c0a4e
|
| 3 |
+
size 4982992688
|
model-00006-of-00008.safetensors
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:01e115f4a97a47d68ae4c905cda1aed2e5003d66877c9be00b798ada8665008b
|
| 3 |
+
size 4950059544
|
model-00007-of-00008.safetensors
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:7ae084b66cbc05475886dda5482ee7a3760018abe98b95f5e852964d2f5743e1
|
| 3 |
+
size 4945866280
|
model-00008-of-00008.safetensors
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:185746606a40419ec25bd6fe1bb290c5309fbd11db60d0098f59e27409911b0d
|
| 3 |
+
size 1783097768
|
model.safetensors.index.json
ADDED
|
The diff for this file is too large to render.
See raw diff
|
|
|
modeling_cogagent.py
ADDED
|
@@ -0,0 +1,974 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
"""largely copy from llama and adapt for CogAgent"""
|
| 2 |
+
import warnings
|
| 3 |
+
from typing import TYPE_CHECKING, Optional, Tuple, List, Union, Literal, Dict, Any
|
| 4 |
+
|
| 5 |
+
import math
|
| 6 |
+
import torch
|
| 7 |
+
from torch import nn
|
| 8 |
+
from torch.nn import CrossEntropyLoss
|
| 9 |
+
from torchvision import transforms
|
| 10 |
+
from einops import rearrange
|
| 11 |
+
|
| 12 |
+
from transformers import PreTrainedModel, PreTrainedTokenizer
|
| 13 |
+
from transformers.utils.logging import get_logger
|
| 14 |
+
from transformers.activations import ACT2FN
|
| 15 |
+
from transformers.modeling_outputs import BaseModelOutputWithPast, CausalLMOutputWithPast
|
| 16 |
+
|
| 17 |
+
from .configuration_cogagent import CogAgentConfig
|
| 18 |
+
# from .util import FastRotaryEmbedding
|
| 19 |
+
from torch.nn import functional as F
|
| 20 |
+
from .visual import EVA2CLIPModel
|
| 21 |
+
from .cross_visual import CrossVisionModel
|
| 22 |
+
|
| 23 |
+
if TYPE_CHECKING:
|
| 24 |
+
from transformers.utils import ModelOutput
|
| 25 |
+
|
| 26 |
+
logger = get_logger(__name__)
|
| 27 |
+
|
| 28 |
+
LANGUAGE_TOKEN_TYPE = 0
|
| 29 |
+
VISION_TOKEN_TYPE = 1
|
| 30 |
+
|
| 31 |
+
|
| 32 |
+
# Copied from transformers.models.bart.modeling_bart._make_causal_mask
|
| 33 |
+
def _make_causal_mask(
|
| 34 |
+
input_ids_shape: torch.Size, dtype: torch.dtype, device: torch.device, past_key_values_length: int = 0
|
| 35 |
+
):
|
| 36 |
+
"""
|
| 37 |
+
Make causal mask used for bi-directional self-attention.
|
| 38 |
+
"""
|
| 39 |
+
bsz, tgt_len = input_ids_shape
|
| 40 |
+
mask = torch.full((tgt_len, tgt_len), torch.finfo(dtype).min, device=device)
|
| 41 |
+
mask_cond = torch.arange(mask.size(-1), device=device)
|
| 42 |
+
mask.masked_fill_(mask_cond < (mask_cond + 1).view(mask.size(-1), 1), 0)
|
| 43 |
+
mask = mask.to(dtype)
|
| 44 |
+
|
| 45 |
+
if past_key_values_length > 0:
|
| 46 |
+
mask = torch.cat([torch.zeros(tgt_len, past_key_values_length, dtype=dtype, device=device), mask], dim=-1)
|
| 47 |
+
return mask[None, None, :, :].expand(bsz, 1, tgt_len, tgt_len + past_key_values_length)
|
| 48 |
+
|
| 49 |
+
|
| 50 |
+
# Copied from transformers.models.bart.modeling_bart._expand_mask
|
| 51 |
+
def _expand_mask(mask: torch.Tensor, dtype: torch.dtype, tgt_len: Optional[int] = None):
|
| 52 |
+
"""
|
| 53 |
+
Expands attention_mask from `[bsz, seq_len]` to `[bsz, 1, tgt_seq_len, src_seq_len]`.
|
| 54 |
+
"""
|
| 55 |
+
bsz, src_len = mask.size()
|
| 56 |
+
tgt_len = tgt_len if tgt_len is not None else src_len
|
| 57 |
+
|
| 58 |
+
expanded_mask = mask[:, None, None, :].expand(bsz, 1, tgt_len, src_len).to(dtype)
|
| 59 |
+
|
| 60 |
+
inverted_mask = 1.0 - expanded_mask
|
| 61 |
+
|
| 62 |
+
return inverted_mask.masked_fill(inverted_mask.to(torch.bool), torch.finfo(dtype).min)
|
| 63 |
+
|
| 64 |
+
|
| 65 |
+
class RMSNorm(nn.Module):
|
| 66 |
+
def __init__(self, hidden_size, eps=1e-6):
|
| 67 |
+
super().__init__()
|
| 68 |
+
self.weight = nn.Parameter(torch.ones(hidden_size))
|
| 69 |
+
self.variance_epsilon = eps
|
| 70 |
+
|
| 71 |
+
def forward(self, hidden_states):
|
| 72 |
+
input_dtype = hidden_states.dtype
|
| 73 |
+
hidden_states = hidden_states.to(torch.float32)
|
| 74 |
+
variance = hidden_states.pow(2).mean(-1, keepdim=True)
|
| 75 |
+
hidden_states = hidden_states * torch.rsqrt(variance + self.variance_epsilon)
|
| 76 |
+
return (self.weight * hidden_states).to(input_dtype)
|
| 77 |
+
|
| 78 |
+
|
| 79 |
+
class MLP(nn.Module):
|
| 80 |
+
def __init__(self, config):
|
| 81 |
+
super().__init__()
|
| 82 |
+
self.hidden_size = config.hidden_size
|
| 83 |
+
self.intermediate_size = config.intermediate_size
|
| 84 |
+
self.gate_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=False)
|
| 85 |
+
self.up_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=False)
|
| 86 |
+
self.down_proj = nn.Linear(self.intermediate_size, self.hidden_size, bias=False)
|
| 87 |
+
self.act_fn = ACT2FN[config.hidden_act]
|
| 88 |
+
|
| 89 |
+
def forward(self, x):
|
| 90 |
+
down_proj = self.down_proj(self.act_fn(self.gate_proj(x)) * self.up_proj(x))
|
| 91 |
+
return down_proj
|
| 92 |
+
|
| 93 |
+
|
| 94 |
+
def get_expert_mask(token_type_ids: "torch.LongTensor(B, L)") -> "[torch.BoolTensor(B, L), torch.BoolTensor(B, L)]":
|
| 95 |
+
vision_token_mask = torch.zeros_like(token_type_ids, dtype=torch.bool)
|
| 96 |
+
vision_token_mask[:, :-1] = (token_type_ids[:, :-1] == VISION_TOKEN_TYPE) & (token_type_ids[:, 1:] == VISION_TOKEN_TYPE)
|
| 97 |
+
language_token_mask = ~vision_token_mask
|
| 98 |
+
return vision_token_mask, language_token_mask
|
| 99 |
+
|
| 100 |
+
|
| 101 |
+
class VisionExpertMLP(nn.Module):
|
| 102 |
+
def __init__(self, config):
|
| 103 |
+
super().__init__()
|
| 104 |
+
self.language_mlp = MLP(config)
|
| 105 |
+
self.vision_mlp = MLP(config)
|
| 106 |
+
|
| 107 |
+
def forward(self, hidden_states: "torch.Tensor(B, L, D)", token_type_ids: "torch.LongTensor(B, L)"):
|
| 108 |
+
output = torch.empty(hidden_states.shape, dtype=hidden_states.dtype, device=hidden_states.device)
|
| 109 |
+
vision_token_mask, language_token_mask = get_expert_mask(token_type_ids)
|
| 110 |
+
output[vision_token_mask] = self.vision_mlp(hidden_states[vision_token_mask])
|
| 111 |
+
output[language_token_mask] = self.language_mlp(hidden_states[language_token_mask])
|
| 112 |
+
return output
|
| 113 |
+
|
| 114 |
+
|
| 115 |
+
def attention_fn(
|
| 116 |
+
query_layer: "torch.tensor(B, H, L, HD)",
|
| 117 |
+
key_layer: "torch.tensor(B, H, L, HD)",
|
| 118 |
+
value_layer: "torch.tensor(B, H, L, HD)",
|
| 119 |
+
attention_mask: "torch.tensor(B, H, L, HD)",
|
| 120 |
+
*,
|
| 121 |
+
scaling_attention_score: bool = True,
|
| 122 |
+
attention_dropout: nn.Module = None
|
| 123 |
+
):
|
| 124 |
+
attention_mask_bool = (attention_mask == 0)
|
| 125 |
+
is_low_triangle = (attention_mask_bool == torch.ones_like(attention_mask_bool, dtype=torch.float).tril()).all()
|
| 126 |
+
is_full = (attention_mask_bool > 0).all()
|
| 127 |
+
if not (int(torch.__version__.split('.')[0]) >= 2):
|
| 128 |
+
warnings.warn("It's recommended to use torch2.0 or higher.")
|
| 129 |
+
if int(torch.__version__.split('.')[0]) >= 2 and scaling_attention_score and (is_full or is_low_triangle):
|
| 130 |
+
dropout_p = 0. if attention_dropout is None or not attention_dropout.training else attention_dropout.p
|
| 131 |
+
return torch.nn.functional.scaled_dot_product_attention(
|
| 132 |
+
query_layer, key_layer, value_layer,
|
| 133 |
+
attn_mask=None,
|
| 134 |
+
dropout_p=dropout_p,
|
| 135 |
+
is_causal=not is_full
|
| 136 |
+
)
|
| 137 |
+
else:
|
| 138 |
+
if scaling_attention_score:
|
| 139 |
+
query_layer = query_layer / math.sqrt(query_layer.shape[-1])
|
| 140 |
+
attention_scores = torch.matmul(query_layer, key_layer.transpose(-1, -2))
|
| 141 |
+
attention_scores = attention_scores + attention_mask
|
| 142 |
+
attention_scores = nn.functional.softmax(attention_scores, dim=-1, dtype=torch.float32).to(query_layer.dtype)
|
| 143 |
+
if attention_dropout is not None:
|
| 144 |
+
attention_scores = attention_dropout(attention_scores)
|
| 145 |
+
context_layer = torch.matmul(attention_scores, value_layer)
|
| 146 |
+
return context_layer
|
| 147 |
+
|
| 148 |
+
class RotaryEmbedding(torch.nn.Module):
|
| 149 |
+
def __init__(self, dim, max_position_embeddings=2048, base=10000, device=None):
|
| 150 |
+
super().__init__()
|
| 151 |
+
|
| 152 |
+
self.dim = dim
|
| 153 |
+
self.max_position_embeddings = max_position_embeddings
|
| 154 |
+
self.base = base
|
| 155 |
+
inv_freq = self._compute_inv_freq(device)
|
| 156 |
+
self.register_buffer("inv_freq", inv_freq)
|
| 157 |
+
self.max_seq_len_cached = 0
|
| 158 |
+
|
| 159 |
+
def _compute_inv_freq(self, device=None):
|
| 160 |
+
return 1.0 / (
|
| 161 |
+
self.base
|
| 162 |
+
** (torch.arange(0, self.dim, 2, device=device) / self.dim)
|
| 163 |
+
)
|
| 164 |
+
|
| 165 |
+
def _set_cos_sin_cache(self, seq_len, device, dtype):
|
| 166 |
+
self.max_seq_len_cached = seq_len
|
| 167 |
+
t = torch.arange(self.max_seq_len_cached, device=device, dtype=self.inv_freq.dtype)
|
| 168 |
+
|
| 169 |
+
freqs = torch.einsum("i,j->ij", t, self.inv_freq)
|
| 170 |
+
# Different from paper, but it uses a different permutation in order to obtain the same calculation
|
| 171 |
+
emb = torch.cat((freqs, freqs), dim=-1)
|
| 172 |
+
self.register_buffer("cos_cached", emb.cos()[:, None, :].to(dtype), persistent=False)
|
| 173 |
+
self.register_buffer("sin_cached", emb.sin()[:, None, :].to(dtype), persistent=False)
|
| 174 |
+
|
| 175 |
+
def forward(self, x, seq_len):
|
| 176 |
+
# x: [bs, num_attention_heads, seq_len, head_size]
|
| 177 |
+
if seq_len > self.max_seq_len_cached:
|
| 178 |
+
self._set_cos_sin_cache(seq_len=seq_len, device=x.device, dtype=x.dtype)
|
| 179 |
+
|
| 180 |
+
return (
|
| 181 |
+
self.cos_cached[:seq_len, ...].to(dtype=x.dtype),
|
| 182 |
+
self.sin_cached[:seq_len, ...].to(dtype=x.dtype),
|
| 183 |
+
)
|
| 184 |
+
|
| 185 |
+
|
| 186 |
+
def rotate_half(x):
|
| 187 |
+
x1, x2 = x[..., :x.shape[-1] // 2], x[..., x.shape[-1] // 2:]
|
| 188 |
+
return torch.cat((-x2, x1), dim=x1.ndim - 1)
|
| 189 |
+
|
| 190 |
+
|
| 191 |
+
def apply_rotary_pos_emb_index_bhs(q, k, cos, sin, position_id):
|
| 192 |
+
# batch_size, num_head, seq_len, hidden_size
|
| 193 |
+
cos, sin = F.embedding(position_id, cos.squeeze(1)).unsqueeze(1), \
|
| 194 |
+
F.embedding(position_id, sin.squeeze(1)).unsqueeze(1)
|
| 195 |
+
q, k = (q * cos) + (rotate_half(q) * sin), (k * cos) + (rotate_half(k) * sin)
|
| 196 |
+
return q, k
|
| 197 |
+
|
| 198 |
+
class VisionExpertAttention(nn.Module):
|
| 199 |
+
def __init__(self, config):
|
| 200 |
+
super().__init__()
|
| 201 |
+
self.config = config
|
| 202 |
+
self.hidden_size = config.hidden_size
|
| 203 |
+
self.num_heads = config.num_attention_heads
|
| 204 |
+
self.head_dim = self.hidden_size // self.num_heads
|
| 205 |
+
self.max_position_embeddings = config.max_position_embeddings
|
| 206 |
+
|
| 207 |
+
self.rotary_emb = RotaryEmbedding(self.head_dim)
|
| 208 |
+
self.vision_expert_query_key_value = nn.Linear(self.hidden_size, self.hidden_size * 3, bias=False)
|
| 209 |
+
self.vision_expert_dense = nn.Linear(self.hidden_size, self.hidden_size, bias=False)
|
| 210 |
+
self.language_expert_query_key_value = nn.Linear(self.hidden_size, self.hidden_size * 3, bias=False)
|
| 211 |
+
self.language_expert_dense = nn.Linear(self.hidden_size, self.hidden_size, bias=False)
|
| 212 |
+
|
| 213 |
+
def _transpose_for_scores(self, tensor):
|
| 214 |
+
"""Transpose a 3D tensor [B, L, H*HD] into a 4D tensor with size [B H L HD]."""
|
| 215 |
+
new_tensor_shape = tensor.size()[:-1] + (self.num_heads, self.head_dim)
|
| 216 |
+
tensor = tensor.view(*new_tensor_shape)
|
| 217 |
+
return tensor.permute(0, 2, 1, 3)
|
| 218 |
+
|
| 219 |
+
def forward(
|
| 220 |
+
self,
|
| 221 |
+
hidden_states: torch.Tensor,
|
| 222 |
+
token_type_ids: torch.LongTensor,
|
| 223 |
+
position_ids: torch.LongTensor,
|
| 224 |
+
attention_mask: Optional[torch.Tensor] = None,
|
| 225 |
+
past_key_value: Optional[Tuple[torch.Tensor]] = None,
|
| 226 |
+
output_attentions: bool = False,
|
| 227 |
+
use_cache: bool = False,
|
| 228 |
+
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
|
| 229 |
+
bsz, q_len, _ = hidden_states.size()
|
| 230 |
+
vision_token_mask, language_token_mask = get_expert_mask(token_type_ids)
|
| 231 |
+
|
| 232 |
+
shape = list(hidden_states.shape)
|
| 233 |
+
shape[-1] = shape[-1] * 3
|
| 234 |
+
mixed_raw_layer = torch.empty(shape, dtype=hidden_states.dtype, device=hidden_states.device)
|
| 235 |
+
mixed_raw_layer[vision_token_mask] = self.vision_expert_query_key_value(hidden_states[vision_token_mask])
|
| 236 |
+
mixed_raw_layer[language_token_mask] = self.language_expert_query_key_value(hidden_states[language_token_mask])
|
| 237 |
+
|
| 238 |
+
query_states, key_states, value_states = torch.split(mixed_raw_layer, self.hidden_size, dim=-1)
|
| 239 |
+
query_states = self._transpose_for_scores(query_states) # B, H, L, HD
|
| 240 |
+
key_states = self._transpose_for_scores(key_states) # B, H, L, HD
|
| 241 |
+
value_states = self._transpose_for_scores(value_states) # B, H, L, HD
|
| 242 |
+
|
| 243 |
+
kv_seq_len = key_states.shape[-2]
|
| 244 |
+
if past_key_value is not None:
|
| 245 |
+
kv_seq_len += past_key_value[0].shape[-2]
|
| 246 |
+
|
| 247 |
+
cos, sin = self.rotary_emb(value_states, seq_len=position_ids.max() + 1)
|
| 248 |
+
query_states, key_states = apply_rotary_pos_emb_index_bhs(query_states, key_states, cos, sin, position_ids)
|
| 249 |
+
|
| 250 |
+
if past_key_value is not None:
|
| 251 |
+
key_states = torch.cat([past_key_value[0], key_states], dim=2)
|
| 252 |
+
value_states = torch.cat([past_key_value[1], value_states], dim=2)
|
| 253 |
+
|
| 254 |
+
past_key_value = (key_states, value_states) if use_cache else None
|
| 255 |
+
|
| 256 |
+
context_layer = attention_fn(
|
| 257 |
+
query_layer=query_states, key_layer=key_states, value_layer=value_states, attention_mask=attention_mask,
|
| 258 |
+
scaling_attention_score=True, attention_dropout=None)
|
| 259 |
+
if context_layer.size() != (bsz, self.num_heads, q_len, self.head_dim):
|
| 260 |
+
raise ValueError(
|
| 261 |
+
f"`attn_output` should be of size {(bsz, self.num_heads, q_len, self.head_dim)}, but is"
|
| 262 |
+
f" {context_layer.size()}"
|
| 263 |
+
)
|
| 264 |
+
context_layer = context_layer.transpose(1, 2).contiguous().reshape(bsz, q_len, self.hidden_size)
|
| 265 |
+
|
| 266 |
+
attn_output = torch.empty(context_layer.shape, dtype=hidden_states.dtype, device=hidden_states.device)
|
| 267 |
+
attn_output[vision_token_mask] = self.vision_expert_dense(context_layer[vision_token_mask])
|
| 268 |
+
attn_output[language_token_mask] = self.language_expert_dense(context_layer[language_token_mask])
|
| 269 |
+
|
| 270 |
+
if output_attentions:
|
| 271 |
+
warnings.warn("output_attentions is not implemented.")
|
| 272 |
+
|
| 273 |
+
return attn_output, None, past_key_value
|
| 274 |
+
|
| 275 |
+
class CrossAttention(nn.Module):
|
| 276 |
+
def __init__(self, config):
|
| 277 |
+
super().__init__()
|
| 278 |
+
self.config = config
|
| 279 |
+
self.hidden_size = config.hidden_size
|
| 280 |
+
self.cross_hidden_size = config.cross_hidden_size
|
| 281 |
+
self.cross_compute_hidden_size = config.cross_compute_hidden_size
|
| 282 |
+
self.num_heads = config.num_attention_heads
|
| 283 |
+
self.head_dim = self.hidden_size // self.num_heads
|
| 284 |
+
self.cross_head_dim = self.cross_compute_hidden_size // self.num_heads
|
| 285 |
+
self.max_position_embeddings = config.max_position_embeddings
|
| 286 |
+
|
| 287 |
+
self.query = nn.Linear(self.hidden_size, self.cross_compute_hidden_size, bias=False)
|
| 288 |
+
self.key_value = nn.Linear(self.cross_hidden_size, self.cross_compute_hidden_size * 2, bias=False)
|
| 289 |
+
self.dense = nn.Linear(self.cross_compute_hidden_size, self.hidden_size, bias=False)
|
| 290 |
+
|
| 291 |
+
def _transpose_for_scores(self, tensor):
|
| 292 |
+
"""Transpose a 3D tensor [B, L, H*HD] into a 4D tensor with size [B H L HD]."""
|
| 293 |
+
new_tensor_shape = tensor.size()[:-1] + (self.num_heads, self.cross_head_dim)
|
| 294 |
+
tensor = tensor.view(*new_tensor_shape)
|
| 295 |
+
return tensor.permute(0, 2, 1, 3)
|
| 296 |
+
|
| 297 |
+
def forward(
|
| 298 |
+
self,
|
| 299 |
+
hidden_states: torch.Tensor,
|
| 300 |
+
encoder_outputs: torch.LongTensor,
|
| 301 |
+
attention_mask: Optional[torch.Tensor] = None,
|
| 302 |
+
past_key_value: Optional[Tuple[torch.Tensor]] = None,
|
| 303 |
+
output_attentions: bool = False,
|
| 304 |
+
use_cache: bool = False,
|
| 305 |
+
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
|
| 306 |
+
bsz, q_len, _ = hidden_states.size()
|
| 307 |
+
|
| 308 |
+
shape = list(hidden_states.shape)
|
| 309 |
+
shape[-1] = shape[-1] * 3
|
| 310 |
+
|
| 311 |
+
mixed_query_layer = self.query(hidden_states)
|
| 312 |
+
if past_key_value is None:
|
| 313 |
+
mixed_x_layer = self.key_value(encoder_outputs)
|
| 314 |
+
mixed_key_layer, mixed_value_layer = torch.split(mixed_x_layer, self.cross_compute_hidden_size, dim=-1)
|
| 315 |
+
key_states = self._transpose_for_scores(mixed_key_layer) # B, H, L, HD
|
| 316 |
+
value_states = self._transpose_for_scores(mixed_value_layer) # B, H, L, HD
|
| 317 |
+
else:
|
| 318 |
+
key_states, value_states = past_key_value
|
| 319 |
+
|
| 320 |
+
query_states = self._transpose_for_scores(mixed_query_layer) # B, H, L, HD
|
| 321 |
+
|
| 322 |
+
past_key_value = (key_states, value_states) if use_cache else None
|
| 323 |
+
|
| 324 |
+
context_layer = attention_fn(
|
| 325 |
+
query_layer=query_states, key_layer=key_states, value_layer=value_states, attention_mask=attention_mask,
|
| 326 |
+
scaling_attention_score=True, attention_dropout=None)
|
| 327 |
+
if context_layer.size() != (bsz, self.num_heads, q_len, self.cross_head_dim):
|
| 328 |
+
raise ValueError(
|
| 329 |
+
f"`cross_attn_output` should be of size {(bsz, self.num_heads, q_len, self.cross_head_dim)}, but is"
|
| 330 |
+
f" {context_layer.size()}"
|
| 331 |
+
)
|
| 332 |
+
context_layer = context_layer.transpose(1, 2).contiguous().reshape(bsz, q_len, self.cross_hidden_size)
|
| 333 |
+
|
| 334 |
+
attn_output = self.dense(context_layer)
|
| 335 |
+
|
| 336 |
+
if output_attentions:
|
| 337 |
+
warnings.warn("output_attentions is not implemented.")
|
| 338 |
+
|
| 339 |
+
return attn_output, None, past_key_value
|
| 340 |
+
|
| 341 |
+
class CogAgentDecoderLayer(nn.Module):
|
| 342 |
+
def __init__(self, config):
|
| 343 |
+
super().__init__()
|
| 344 |
+
self.hidden_size = config.hidden_size
|
| 345 |
+
self.self_attn = VisionExpertAttention(config=config)
|
| 346 |
+
self.cross_attn = CrossAttention(config=config)
|
| 347 |
+
self.mlp = VisionExpertMLP(config)
|
| 348 |
+
self.input_layernorm = RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
|
| 349 |
+
self.post_attention_layernorm = RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
|
| 350 |
+
self.post_cross_attention_layernorm = RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
|
| 351 |
+
|
| 352 |
+
def forward(
|
| 353 |
+
self,
|
| 354 |
+
hidden_states: torch.Tensor,
|
| 355 |
+
encoder_outputs: torch.Tensor,
|
| 356 |
+
token_type_ids: torch.LongTensor,
|
| 357 |
+
position_ids: torch.LongTensor,
|
| 358 |
+
attention_mask: Optional[torch.Tensor] = None,
|
| 359 |
+
cross_attention_mask: Optional[torch.Tensor] = None,
|
| 360 |
+
past_key_value: Optional[Tuple[torch.Tensor]] = None,
|
| 361 |
+
output_attentions: Optional[bool] = False,
|
| 362 |
+
use_cache: Optional[bool] = False,
|
| 363 |
+
) -> Tuple[torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]]]:
|
| 364 |
+
residual = hidden_states
|
| 365 |
+
|
| 366 |
+
hidden_states = self.input_layernorm(hidden_states)
|
| 367 |
+
|
| 368 |
+
# Self Attention
|
| 369 |
+
hidden_states, self_attn_weights, present_key_value = self.self_attn(
|
| 370 |
+
hidden_states=hidden_states,
|
| 371 |
+
token_type_ids=token_type_ids,
|
| 372 |
+
position_ids=position_ids,
|
| 373 |
+
attention_mask=attention_mask,
|
| 374 |
+
past_key_value=past_key_value[:2] if past_key_value is not None else None,
|
| 375 |
+
output_attentions=output_attentions,
|
| 376 |
+
use_cache=use_cache,
|
| 377 |
+
)
|
| 378 |
+
hidden_states = residual + hidden_states
|
| 379 |
+
|
| 380 |
+
cross_input = self.post_cross_attention_layernorm(hidden_states)
|
| 381 |
+
# Fully Connected
|
| 382 |
+
attention_output, self_cross_attn_weights, present_cross_key_value = self.cross_attn(
|
| 383 |
+
hidden_states=cross_input,
|
| 384 |
+
encoder_outputs=encoder_outputs,
|
| 385 |
+
attention_mask=cross_attention_mask,
|
| 386 |
+
past_key_value=past_key_value[-2:] if past_key_value is not None else None,
|
| 387 |
+
output_attentions=output_attentions,
|
| 388 |
+
use_cache=use_cache,
|
| 389 |
+
)
|
| 390 |
+
hidden_states = hidden_states + attention_output
|
| 391 |
+
mlp_input = self.post_attention_layernorm(hidden_states)
|
| 392 |
+
mlp_output = self.mlp(mlp_input, token_type_ids=token_type_ids)
|
| 393 |
+
hidden_states = mlp_output + hidden_states
|
| 394 |
+
|
| 395 |
+
outputs = (hidden_states,)
|
| 396 |
+
|
| 397 |
+
if output_attentions:
|
| 398 |
+
outputs += (self_attn_weights,)
|
| 399 |
+
|
| 400 |
+
if use_cache:
|
| 401 |
+
outputs += (present_key_value+present_cross_key_value,)
|
| 402 |
+
|
| 403 |
+
return outputs # type: ignore
|
| 404 |
+
|
| 405 |
+
|
| 406 |
+
class CogAgentPreTrainedModel(PreTrainedModel):
|
| 407 |
+
config_class = CogAgentConfig
|
| 408 |
+
base_model_prefix = "model"
|
| 409 |
+
supports_gradient_checkpointing = False
|
| 410 |
+
_no_split_modules = ["CogAgentDecoderLayer", 'TransformerLayer', 'Block']
|
| 411 |
+
_skip_keys_device_placement = "past_key_values"
|
| 412 |
+
|
| 413 |
+
def _init_weights(self, module):
|
| 414 |
+
std = self.config.initializer_range
|
| 415 |
+
if isinstance(module, nn.Linear):
|
| 416 |
+
module.weight.data.normal_(mean=0.0, std=std)
|
| 417 |
+
if module.bias is not None:
|
| 418 |
+
module.bias.data.zero_()
|
| 419 |
+
elif isinstance(module, nn.Embedding):
|
| 420 |
+
module.weight.data.normal_(mean=0.0, std=std)
|
| 421 |
+
if module.padding_idx is not None:
|
| 422 |
+
module.weight.data[module.padding_idx].zero_()
|
| 423 |
+
|
| 424 |
+
|
| 425 |
+
def is_empty(images_list: Optional[List[List[torch.Tensor]]]):
|
| 426 |
+
if images_list is None or len(images_list) == 0:
|
| 427 |
+
return True
|
| 428 |
+
for image_list in images_list:
|
| 429 |
+
if len(image_list):
|
| 430 |
+
return False
|
| 431 |
+
return True
|
| 432 |
+
|
| 433 |
+
|
| 434 |
+
def build_position_ids(x: "torch.BoolTensor(B, L)", attention_mask: Optional["torch.BoolTensor(B, L)"] = None) -> "torch.LongTensor(B, L)":
|
| 435 |
+
if attention_mask is not None:
|
| 436 |
+
tmp = x.clone()
|
| 437 |
+
tmp[~(attention_mask.bool())] = -1
|
| 438 |
+
else:
|
| 439 |
+
tmp = x.clone()
|
| 440 |
+
# image boi eoi token as LANGUAGE_TOKEN_TYPE
|
| 441 |
+
is_boi_eoi = torch.zeros_like(x, dtype=torch.bool)
|
| 442 |
+
is_boi_eoi[:, 1:] |= (tmp[:, 1:] == VISION_TOKEN_TYPE) & (tmp[:, :-1] == LANGUAGE_TOKEN_TYPE)
|
| 443 |
+
is_boi_eoi[:, 0] |= (tmp[:, 0] == VISION_TOKEN_TYPE)
|
| 444 |
+
is_boi_eoi[:, :-1] |= (tmp[:, :-1] == VISION_TOKEN_TYPE) & (tmp[:, 1:] == LANGUAGE_TOKEN_TYPE)
|
| 445 |
+
is_boi_eoi[:, -1] |= (tmp[:, -1] == VISION_TOKEN_TYPE)
|
| 446 |
+
tmp[is_boi_eoi] = LANGUAGE_TOKEN_TYPE
|
| 447 |
+
# final position ids
|
| 448 |
+
y = torch.zeros_like(x, dtype=torch.long)
|
| 449 |
+
y[:, 1:] = (tmp[:, 1:] == LANGUAGE_TOKEN_TYPE) | ((tmp[:, 1:] == VISION_TOKEN_TYPE) & (tmp[:, :-1] == LANGUAGE_TOKEN_TYPE))
|
| 450 |
+
y = y.cumsum(dim=-1)
|
| 451 |
+
return y
|
| 452 |
+
|
| 453 |
+
|
| 454 |
+
class CogAgentModel(CogAgentPreTrainedModel):
|
| 455 |
+
def __init__(self, config):
|
| 456 |
+
super().__init__(config)
|
| 457 |
+
self.padding_idx = config.pad_token_id
|
| 458 |
+
self.vocab_size = config.vocab_size
|
| 459 |
+
|
| 460 |
+
self.embed_tokens = nn.Embedding(config.vocab_size, config.hidden_size, self.padding_idx)
|
| 461 |
+
self.layers = nn.ModuleList([CogAgentDecoderLayer(config) for _ in range(config.num_hidden_layers)])
|
| 462 |
+
self.norm = RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
|
| 463 |
+
|
| 464 |
+
self.vision = EVA2CLIPModel(config)
|
| 465 |
+
self.cross_vision = CrossVisionModel(config)
|
| 466 |
+
|
| 467 |
+
self.gradient_checkpointing = False
|
| 468 |
+
# Initialize weights and apply final processing
|
| 469 |
+
self.post_init()
|
| 470 |
+
|
| 471 |
+
def encode_images(self, images: List[List[torch.Tensor]]) -> torch.Tensor:
|
| 472 |
+
images_list, images = images, []
|
| 473 |
+
|
| 474 |
+
images = []
|
| 475 |
+
for image_list in images_list:
|
| 476 |
+
for image in image_list:
|
| 477 |
+
images.append(image)
|
| 478 |
+
|
| 479 |
+
images = torch.stack(images)
|
| 480 |
+
images_features = self.vision(images)
|
| 481 |
+
return images_features
|
| 482 |
+
|
| 483 |
+
def encode_cross_images(self, images: List[List[torch.Tensor]]) -> torch.Tensor:
|
| 484 |
+
images_list, images = images, []
|
| 485 |
+
|
| 486 |
+
images = []
|
| 487 |
+
for image_list in images_list:
|
| 488 |
+
for image in image_list:
|
| 489 |
+
images.append(image)
|
| 490 |
+
|
| 491 |
+
images = torch.stack(images)
|
| 492 |
+
encoder_outputs = self.cross_vision(images)
|
| 493 |
+
return encoder_outputs
|
| 494 |
+
|
| 495 |
+
def forward(
|
| 496 |
+
self,
|
| 497 |
+
input_ids: torch.LongTensor = None,
|
| 498 |
+
images: List[List[torch.Tensor]] = None,
|
| 499 |
+
cross_images: List[List[torch.Tensor]] = None,
|
| 500 |
+
token_type_ids: Optional[torch.LongTensor] = None,
|
| 501 |
+
attention_mask: Optional[torch.Tensor] = None,
|
| 502 |
+
cross_attention_mask: Optional[torch.Tensor] = None,
|
| 503 |
+
position_ids: Optional[torch.LongTensor] = None,
|
| 504 |
+
past_key_values: Optional[List[torch.FloatTensor]] = None,
|
| 505 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
| 506 |
+
use_cache: Optional[bool] = None,
|
| 507 |
+
output_attentions: Optional[bool] = None,
|
| 508 |
+
output_hidden_states: Optional[bool] = None,
|
| 509 |
+
return_dict: Optional[bool] = None,
|
| 510 |
+
) -> Union[Tuple, BaseModelOutputWithPast]:
|
| 511 |
+
"""take care of image_encode, token_type_ids, position_ids and (attention_mask = None is fine)"""
|
| 512 |
+
|
| 513 |
+
if past_key_values is not None:
|
| 514 |
+
encoder_outputs = None
|
| 515 |
+
# generate mode with past_key_values. the image features are already mapped
|
| 516 |
+
else:
|
| 517 |
+
# not allow for inputs_embeds, because we want to process image feature
|
| 518 |
+
assert input_ids is not None and inputs_embeds is None, f"{input_ids} {inputs_embeds}"
|
| 519 |
+
if not is_empty(images): # multi-modality
|
| 520 |
+
assert token_type_ids is not None, f"multi-modality requires `token_type_ids`!"
|
| 521 |
+
assert len(input_ids) == len(images), f"{len(input_ids)} {len(images)}"
|
| 522 |
+
inputs_embeds = self.embed_tokens(input_ids)
|
| 523 |
+
images_features = self.encode_images(images)
|
| 524 |
+
encoder_outputs = self.encode_cross_images(cross_images)
|
| 525 |
+
images_features = rearrange(images_features, 'b n d -> (b n) d')
|
| 526 |
+
images_features = images_features.to(dtype=inputs_embeds.dtype, device=inputs_embeds.device)
|
| 527 |
+
inputs_embeds = inputs_embeds.index_put([token_type_ids == VISION_TOKEN_TYPE], images_features)
|
| 528 |
+
else: # single-modality
|
| 529 |
+
if token_type_ids is None:
|
| 530 |
+
token_type_ids = torch.ones_like(input_ids, dtype=torch.long, device=input_ids.device) * LANGUAGE_TOKEN_TYPE
|
| 531 |
+
assert not (token_type_ids == VISION_TOKEN_TYPE).any(), f"{(token_type_ids == VISION_TOKEN_TYPE).sum()}"
|
| 532 |
+
inputs_embeds = self.embed_tokens(input_ids)
|
| 533 |
+
encoder_outputs = None
|
| 534 |
+
|
| 535 |
+
if position_ids is None:
|
| 536 |
+
position_ids = build_position_ids(token_type_ids, attention_mask)
|
| 537 |
+
input_ids = None
|
| 538 |
+
|
| 539 |
+
return self.llm_forward(
|
| 540 |
+
input_ids=input_ids,
|
| 541 |
+
encoder_outputs=encoder_outputs,
|
| 542 |
+
token_type_ids=token_type_ids,
|
| 543 |
+
attention_mask=attention_mask,
|
| 544 |
+
cross_attention_mask=cross_attention_mask,
|
| 545 |
+
position_ids=position_ids,
|
| 546 |
+
past_key_values=past_key_values,
|
| 547 |
+
inputs_embeds=inputs_embeds,
|
| 548 |
+
use_cache=use_cache,
|
| 549 |
+
output_attentions=output_attentions,
|
| 550 |
+
output_hidden_states=output_hidden_states,
|
| 551 |
+
return_dict=return_dict,
|
| 552 |
+
)
|
| 553 |
+
|
| 554 |
+
def llm_forward(
|
| 555 |
+
self,
|
| 556 |
+
input_ids: torch.LongTensor = None,
|
| 557 |
+
encoder_outputs: torch.LongTensor = None,
|
| 558 |
+
token_type_ids: torch.LongTensor = None,
|
| 559 |
+
attention_mask: Optional[torch.Tensor] = None,
|
| 560 |
+
cross_attention_mask: Optional[torch.Tensor] = None,
|
| 561 |
+
position_ids: Optional[torch.LongTensor] = None,
|
| 562 |
+
past_key_values: Optional[List[torch.FloatTensor]] = None,
|
| 563 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
| 564 |
+
use_cache: Optional[bool] = None,
|
| 565 |
+
output_attentions: Optional[bool] = None,
|
| 566 |
+
output_hidden_states: Optional[bool] = None,
|
| 567 |
+
return_dict: Optional[bool] = None,
|
| 568 |
+
) -> Union[Tuple, BaseModelOutputWithPast]:
|
| 569 |
+
"""largely copy from llama forward and adapt for CogAgent with `token_type_ids`"""
|
| 570 |
+
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
| 571 |
+
output_hidden_states = (
|
| 572 |
+
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
| 573 |
+
)
|
| 574 |
+
use_cache = use_cache if use_cache is not None else self.config.use_cache
|
| 575 |
+
|
| 576 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
| 577 |
+
|
| 578 |
+
# retrieve input_ids and inputs_embeds
|
| 579 |
+
if input_ids is not None and inputs_embeds is not None:
|
| 580 |
+
raise ValueError("You cannot specify both decoder_input_ids and decoder_inputs_embeds at the same time")
|
| 581 |
+
elif input_ids is not None:
|
| 582 |
+
batch_size, seq_length = input_ids.shape
|
| 583 |
+
elif inputs_embeds is not None:
|
| 584 |
+
batch_size, seq_length, _ = inputs_embeds.shape
|
| 585 |
+
else:
|
| 586 |
+
raise ValueError("You have to specify either decoder_input_ids or decoder_inputs_embeds")
|
| 587 |
+
|
| 588 |
+
seq_length_with_past = seq_length
|
| 589 |
+
past_key_values_length = 0
|
| 590 |
+
|
| 591 |
+
if past_key_values is not None:
|
| 592 |
+
past_key_values_length = past_key_values[0][0].shape[2]
|
| 593 |
+
seq_length_with_past = seq_length_with_past + past_key_values_length
|
| 594 |
+
|
| 595 |
+
if position_ids is None:
|
| 596 |
+
device = input_ids.device if input_ids is not None else inputs_embeds.device
|
| 597 |
+
position_ids = torch.arange(
|
| 598 |
+
past_key_values_length, seq_length + past_key_values_length, dtype=torch.long, device=device
|
| 599 |
+
)
|
| 600 |
+
position_ids = position_ids.unsqueeze(0).view(-1, seq_length)
|
| 601 |
+
else:
|
| 602 |
+
position_ids = position_ids.view(-1, seq_length).long()
|
| 603 |
+
|
| 604 |
+
if inputs_embeds is None:
|
| 605 |
+
inputs_embeds = self.embed_tokens(input_ids)
|
| 606 |
+
# embed positions
|
| 607 |
+
if attention_mask is None:
|
| 608 |
+
attention_mask = torch.ones(
|
| 609 |
+
(batch_size, seq_length_with_past), dtype=torch.bool, device=inputs_embeds.device
|
| 610 |
+
)
|
| 611 |
+
if cross_attention_mask is None:
|
| 612 |
+
cross_attention_mask = torch.ones(
|
| 613 |
+
(batch_size, 1), dtype=torch.bool, device=inputs_embeds.device
|
| 614 |
+
)
|
| 615 |
+
attention_mask = self._prepare_decoder_attention_mask(
|
| 616 |
+
attention_mask, (batch_size, seq_length), inputs_embeds, past_key_values_length
|
| 617 |
+
)
|
| 618 |
+
|
| 619 |
+
hidden_states = inputs_embeds
|
| 620 |
+
|
| 621 |
+
# decoder layers
|
| 622 |
+
all_hidden_states = () if output_hidden_states else None
|
| 623 |
+
all_self_attns = () if output_attentions else None
|
| 624 |
+
next_decoder_cache = () if use_cache else None
|
| 625 |
+
|
| 626 |
+
for idx, decoder_layer in enumerate(self.layers):
|
| 627 |
+
if output_hidden_states:
|
| 628 |
+
all_hidden_states += (hidden_states,)
|
| 629 |
+
|
| 630 |
+
past_key_value = past_key_values[idx] if past_key_values is not None else None
|
| 631 |
+
layer_outputs = decoder_layer(
|
| 632 |
+
hidden_states,
|
| 633 |
+
encoder_outputs=encoder_outputs,
|
| 634 |
+
token_type_ids=token_type_ids,
|
| 635 |
+
attention_mask=attention_mask,
|
| 636 |
+
cross_attention_mask=cross_attention_mask,
|
| 637 |
+
position_ids=position_ids,
|
| 638 |
+
past_key_value=past_key_value,
|
| 639 |
+
output_attentions=output_attentions,
|
| 640 |
+
use_cache=use_cache,
|
| 641 |
+
)
|
| 642 |
+
hidden_states = layer_outputs[0]
|
| 643 |
+
|
| 644 |
+
if use_cache:
|
| 645 |
+
next_decoder_cache += (layer_outputs[2 if output_attentions else 1],)
|
| 646 |
+
|
| 647 |
+
if output_attentions:
|
| 648 |
+
all_self_attns += (layer_outputs[1],)
|
| 649 |
+
|
| 650 |
+
hidden_states = self.norm(hidden_states)
|
| 651 |
+
|
| 652 |
+
# add hidden states from the last decoder layer
|
| 653 |
+
if output_hidden_states:
|
| 654 |
+
all_hidden_states += (hidden_states,)
|
| 655 |
+
|
| 656 |
+
next_cache = next_decoder_cache if use_cache else None
|
| 657 |
+
if not return_dict:
|
| 658 |
+
return tuple(v for v in [hidden_states, next_cache, all_hidden_states, all_self_attns] if v is not None)
|
| 659 |
+
return BaseModelOutputWithPast(
|
| 660 |
+
last_hidden_state=hidden_states,
|
| 661 |
+
past_key_values=next_cache,
|
| 662 |
+
hidden_states=all_hidden_states,
|
| 663 |
+
attentions=all_self_attns,
|
| 664 |
+
)
|
| 665 |
+
|
| 666 |
+
def get_input_embeddings(self):
|
| 667 |
+
return self.embed_tokens
|
| 668 |
+
|
| 669 |
+
def set_input_embeddings(self, value):
|
| 670 |
+
self.embed_tokens = value
|
| 671 |
+
|
| 672 |
+
# noinspection PyMethodMayBeStatic
|
| 673 |
+
# Copied from transformers.models.bart.modeling_bart.BartDecoder._prepare_decoder_attention_mask
|
| 674 |
+
def _prepare_decoder_attention_mask(self, attention_mask, input_shape, inputs_embeds, past_key_values_length):
|
| 675 |
+
# create causal mask
|
| 676 |
+
# [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len]
|
| 677 |
+
combined_attention_mask = None
|
| 678 |
+
if input_shape[-1] > 1:
|
| 679 |
+
combined_attention_mask = _make_causal_mask(
|
| 680 |
+
input_shape,
|
| 681 |
+
inputs_embeds.dtype,
|
| 682 |
+
device=inputs_embeds.device,
|
| 683 |
+
past_key_values_length=past_key_values_length,
|
| 684 |
+
)
|
| 685 |
+
|
| 686 |
+
if attention_mask is not None:
|
| 687 |
+
# [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len]
|
| 688 |
+
expanded_attn_mask = _expand_mask(attention_mask, inputs_embeds.dtype, tgt_len=input_shape[-1]).to(
|
| 689 |
+
inputs_embeds.device
|
| 690 |
+
)
|
| 691 |
+
combined_attention_mask = (
|
| 692 |
+
expanded_attn_mask if combined_attention_mask is None else expanded_attn_mask + combined_attention_mask
|
| 693 |
+
)
|
| 694 |
+
|
| 695 |
+
return combined_attention_mask
|
| 696 |
+
|
| 697 |
+
def vqa_history_to_prompt(history, query):
|
| 698 |
+
# Only support single round chat in vqa mode
|
| 699 |
+
prompt = "<EOI>Question: "
|
| 700 |
+
# for i, (old_query, response) in enumerate(history):
|
| 701 |
+
# prompt += old_query + " Short answer: " + response + " Question: "
|
| 702 |
+
prompt += query + " Short answer:"
|
| 703 |
+
return prompt
|
| 704 |
+
|
| 705 |
+
def chat_old_history_to_prompt(history, query):
|
| 706 |
+
prompt = "<EOI>Question: "
|
| 707 |
+
for i, (old_query, response) in enumerate(history):
|
| 708 |
+
prompt += old_query + " Answer: " + response + "\nQuestion: "
|
| 709 |
+
prompt += query + " Answer:"
|
| 710 |
+
return prompt
|
| 711 |
+
|
| 712 |
+
def chat_history_to_prompt(history, query):
|
| 713 |
+
prompt = " [INST] "
|
| 714 |
+
for i, (old_query, response) in enumerate(history):
|
| 715 |
+
prompt += old_query + " [/INST] " + response + " [INST] "
|
| 716 |
+
prompt += query + " [/INST] "
|
| 717 |
+
return prompt
|
| 718 |
+
|
| 719 |
+
|
| 720 |
+
def base_history_to_prompt(history, query):
|
| 721 |
+
prompt = query
|
| 722 |
+
return prompt
|
| 723 |
+
|
| 724 |
+
|
| 725 |
+
_history_to_prompt = {
|
| 726 |
+
"base": base_history_to_prompt,
|
| 727 |
+
"chat": chat_history_to_prompt,
|
| 728 |
+
"chat_old": chat_old_history_to_prompt,
|
| 729 |
+
"vqa": vqa_history_to_prompt
|
| 730 |
+
}
|
| 731 |
+
|
| 732 |
+
|
| 733 |
+
class CogAgentForCausalLM(CogAgentPreTrainedModel):
|
| 734 |
+
_auto_class = "AutoModelForCausalLM"
|
| 735 |
+
|
| 736 |
+
def __init__(self, config):
|
| 737 |
+
super().__init__(config)
|
| 738 |
+
self.model = CogAgentModel(config)
|
| 739 |
+
self.vocab_size = config.vocab_size
|
| 740 |
+
self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
|
| 741 |
+
|
| 742 |
+
# Initialize weights and apply final processing
|
| 743 |
+
self.post_init()
|
| 744 |
+
|
| 745 |
+
def get_input_embeddings(self):
|
| 746 |
+
return self.model.embed_tokens
|
| 747 |
+
|
| 748 |
+
def set_input_embeddings(self, value):
|
| 749 |
+
self.model.embed_tokens = value
|
| 750 |
+
|
| 751 |
+
def get_output_embeddings(self):
|
| 752 |
+
return self.lm_head
|
| 753 |
+
|
| 754 |
+
def set_output_embeddings(self, new_embeddings):
|
| 755 |
+
self.lm_head = new_embeddings
|
| 756 |
+
|
| 757 |
+
def set_decoder(self, decoder):
|
| 758 |
+
self.model = decoder
|
| 759 |
+
|
| 760 |
+
def get_decoder(self):
|
| 761 |
+
return self.model
|
| 762 |
+
|
| 763 |
+
def forward(
|
| 764 |
+
self,
|
| 765 |
+
input_ids: torch.LongTensor = None,
|
| 766 |
+
images: List[List[torch.Tensor]] = None,
|
| 767 |
+
cross_images: List[List[torch.Tensor]] = None,
|
| 768 |
+
token_type_ids: Optional[torch.LongTensor] = None,
|
| 769 |
+
attention_mask: Optional[torch.Tensor] = None,
|
| 770 |
+
position_ids: Optional[torch.LongTensor] = None,
|
| 771 |
+
past_key_values: Optional[List[torch.FloatTensor]] = None,
|
| 772 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
| 773 |
+
use_cache: Optional[bool] = None,
|
| 774 |
+
output_attentions: Optional[bool] = None,
|
| 775 |
+
output_hidden_states: Optional[bool] = None,
|
| 776 |
+
return_dict: Optional[bool] = None,
|
| 777 |
+
labels: Optional[torch.LongTensor] = None,
|
| 778 |
+
) -> Union[Tuple, CausalLMOutputWithPast]:
|
| 779 |
+
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
| 780 |
+
output_hidden_states = (
|
| 781 |
+
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
| 782 |
+
)
|
| 783 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
| 784 |
+
|
| 785 |
+
# decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn)
|
| 786 |
+
outputs = self.model(
|
| 787 |
+
input_ids=input_ids,
|
| 788 |
+
images=images,
|
| 789 |
+
cross_images=cross_images,
|
| 790 |
+
token_type_ids=token_type_ids,
|
| 791 |
+
attention_mask=attention_mask,
|
| 792 |
+
position_ids=position_ids,
|
| 793 |
+
past_key_values=past_key_values,
|
| 794 |
+
inputs_embeds=inputs_embeds,
|
| 795 |
+
use_cache=use_cache,
|
| 796 |
+
output_attentions=output_attentions,
|
| 797 |
+
output_hidden_states=output_hidden_states,
|
| 798 |
+
return_dict=return_dict,
|
| 799 |
+
)
|
| 800 |
+
|
| 801 |
+
hidden_states = outputs[0]
|
| 802 |
+
logits = self.lm_head(hidden_states)
|
| 803 |
+
logits = logits.float()
|
| 804 |
+
|
| 805 |
+
loss = None
|
| 806 |
+
if labels is not None:
|
| 807 |
+
# Shift so that tokens < n predict n
|
| 808 |
+
shift_logits = logits[..., :-1, :].contiguous()
|
| 809 |
+
shift_labels = labels[..., 1:].contiguous()
|
| 810 |
+
# Flatten the tokens
|
| 811 |
+
loss_fct = CrossEntropyLoss()
|
| 812 |
+
shift_logits = shift_logits.view(-1, self.config.vocab_size)
|
| 813 |
+
shift_labels = shift_labels.view(-1)
|
| 814 |
+
# Enable model parallelism
|
| 815 |
+
shift_labels = shift_labels.to(shift_logits.device)
|
| 816 |
+
loss = loss_fct(shift_logits, shift_labels)
|
| 817 |
+
|
| 818 |
+
if not return_dict:
|
| 819 |
+
output = (logits,) + outputs[1:]
|
| 820 |
+
return (loss,) + output if loss is not None else output
|
| 821 |
+
|
| 822 |
+
return CausalLMOutputWithPast(
|
| 823 |
+
loss=loss,
|
| 824 |
+
logits=logits,
|
| 825 |
+
past_key_values=outputs.past_key_values,
|
| 826 |
+
hidden_states=outputs.hidden_states,
|
| 827 |
+
attentions=outputs.attentions,
|
| 828 |
+
)
|
| 829 |
+
|
| 830 |
+
def _prepare_attention_mask_for_generation(
|
| 831 |
+
self,
|
| 832 |
+
inputs: torch.Tensor,
|
| 833 |
+
pad_token_id: Optional[int],
|
| 834 |
+
eos_token_id: Optional[Union[int, List[int]]],
|
| 835 |
+
) -> torch.LongTensor:
|
| 836 |
+
return torch.ones(inputs.shape[:2], dtype=torch.long, device=inputs.device) # type: ignore
|
| 837 |
+
|
| 838 |
+
def prepare_inputs_for_generation(
|
| 839 |
+
self, input_ids, token_type_ids, images=None, cross_images=None, past_key_values=None, attention_mask=None, inputs_embeds=None, **kwargs
|
| 840 |
+
):
|
| 841 |
+
# build position_ids if needed
|
| 842 |
+
position_ids = kwargs.get("position_ids", None)
|
| 843 |
+
if position_ids is None:
|
| 844 |
+
position_ids = build_position_ids(token_type_ids, attention_mask)
|
| 845 |
+
|
| 846 |
+
if past_key_values:
|
| 847 |
+
input_ids = input_ids[:, -1:]
|
| 848 |
+
token_type_ids = token_type_ids[:, -1:]
|
| 849 |
+
position_ids = position_ids[:, -1:]
|
| 850 |
+
|
| 851 |
+
# if `inputs_embeds` are passed, we only want to use them in the 1st generation step
|
| 852 |
+
if inputs_embeds is not None and past_key_values is None:
|
| 853 |
+
model_inputs = {"inputs_embeds": inputs_embeds}
|
| 854 |
+
else:
|
| 855 |
+
model_inputs = {"input_ids": input_ids}
|
| 856 |
+
|
| 857 |
+
model_inputs.update(
|
| 858 |
+
{
|
| 859 |
+
"token_type_ids": token_type_ids,
|
| 860 |
+
"images": images,
|
| 861 |
+
"cross_images": cross_images,
|
| 862 |
+
"position_ids": position_ids,
|
| 863 |
+
"past_key_values": past_key_values,
|
| 864 |
+
"use_cache": kwargs.get("use_cache"),
|
| 865 |
+
"attention_mask": attention_mask,
|
| 866 |
+
}
|
| 867 |
+
)
|
| 868 |
+
return model_inputs
|
| 869 |
+
|
| 870 |
+
def _update_model_kwargs_for_generation(
|
| 871 |
+
self,
|
| 872 |
+
outputs: "ModelOutput",
|
| 873 |
+
model_kwargs: Dict[str, Any],
|
| 874 |
+
is_encoder_decoder: bool = False,
|
| 875 |
+
standardize_cache_format: bool = False,
|
| 876 |
+
) -> Dict[str, Any]:
|
| 877 |
+
# update past_key_values
|
| 878 |
+
model_kwargs["past_key_values"] = self._extract_past_from_model_output(
|
| 879 |
+
outputs, standardize_cache_format=standardize_cache_format
|
| 880 |
+
)
|
| 881 |
+
if getattr(outputs, "state", None) is not None:
|
| 882 |
+
model_kwargs["state"] = outputs.state
|
| 883 |
+
|
| 884 |
+
# update token_type_ids with last value
|
| 885 |
+
if "token_type_ids" in model_kwargs:
|
| 886 |
+
token_type_ids = model_kwargs["token_type_ids"]
|
| 887 |
+
new_token_type_ids = torch.ones(size=(token_type_ids.shape[0], 1), dtype=token_type_ids.dtype, device=token_type_ids.device) * LANGUAGE_TOKEN_TYPE
|
| 888 |
+
model_kwargs["token_type_ids"] = torch.cat([token_type_ids, new_token_type_ids], dim=-1)
|
| 889 |
+
|
| 890 |
+
if not is_encoder_decoder:
|
| 891 |
+
# update attention mask
|
| 892 |
+
if "attention_mask" in model_kwargs:
|
| 893 |
+
attention_mask = model_kwargs["attention_mask"]
|
| 894 |
+
model_kwargs["attention_mask"] = torch.cat(
|
| 895 |
+
[attention_mask, attention_mask.new_ones((attention_mask.shape[0], 1))], dim=-1
|
| 896 |
+
)
|
| 897 |
+
else:
|
| 898 |
+
# update decoder attention mask
|
| 899 |
+
if "decoder_attention_mask" in model_kwargs:
|
| 900 |
+
decoder_attention_mask = model_kwargs["decoder_attention_mask"]
|
| 901 |
+
model_kwargs["decoder_attention_mask"] = torch.cat(
|
| 902 |
+
[decoder_attention_mask, decoder_attention_mask.new_ones((decoder_attention_mask.shape[0], 1))],
|
| 903 |
+
dim=-1,
|
| 904 |
+
)
|
| 905 |
+
|
| 906 |
+
return model_kwargs
|
| 907 |
+
|
| 908 |
+
def _reorder_cache(self, past_key_values, beam_idx):
|
| 909 |
+
reordered_past = ()
|
| 910 |
+
for layer_past in past_key_values:
|
| 911 |
+
reordered_past += (
|
| 912 |
+
tuple(past_state.index_select(0, beam_idx.to(past_state.device)) for past_state in layer_past),
|
| 913 |
+
)
|
| 914 |
+
return reordered_past
|
| 915 |
+
|
| 916 |
+
def build_conversation_input_ids(
|
| 917 |
+
self,
|
| 918 |
+
tokenizer: "PreTrainedTokenizer",
|
| 919 |
+
*,
|
| 920 |
+
query: str,
|
| 921 |
+
history: Optional[List[Tuple[str, str]]] = None,
|
| 922 |
+
images: Optional[List["PIL.Image"]] = None,
|
| 923 |
+
template_version: Optional[Literal["base", "chat", "vqa"]] = None,
|
| 924 |
+
):
|
| 925 |
+
image_size: int = self.config.vision_config['image_size']
|
| 926 |
+
cross_image_size: int = self.config.cross_image_size
|
| 927 |
+
patch_size: int = self.config.vision_config['patch_size']
|
| 928 |
+
template_version = template_version or self.config.template_version
|
| 929 |
+
assert images is None or len(images) <= 1, f"not support multi images by now."
|
| 930 |
+
history = history or []
|
| 931 |
+
text = _history_to_prompt[template_version](history, query)
|
| 932 |
+
|
| 933 |
+
input_ids = [tokenizer.bos_token_id]
|
| 934 |
+
token_type_ids = [LANGUAGE_TOKEN_TYPE]
|
| 935 |
+
if images is not None and len(images) == 1:
|
| 936 |
+
ori = images
|
| 937 |
+
# vision
|
| 938 |
+
transform = transforms.Compose(
|
| 939 |
+
[
|
| 940 |
+
transforms.Resize(
|
| 941 |
+
(image_size, image_size), interpolation=transforms.InterpolationMode.BICUBIC
|
| 942 |
+
),
|
| 943 |
+
transforms.ToTensor(),
|
| 944 |
+
transforms.Normalize((0.48145466, 0.4578275, 0.40821073), (0.26862954, 0.26130258, 0.27577711)),
|
| 945 |
+
]
|
| 946 |
+
)
|
| 947 |
+
images = [transform(ori[0])]
|
| 948 |
+
cross_transform = transforms.Compose(
|
| 949 |
+
[
|
| 950 |
+
transforms.Resize(
|
| 951 |
+
(cross_image_size, cross_image_size), interpolation=transforms.InterpolationMode.BICUBIC
|
| 952 |
+
),
|
| 953 |
+
transforms.ToTensor(),
|
| 954 |
+
transforms.Normalize((0.48145466, 0.4578275, 0.40821073), (0.26862954, 0.26130258, 0.27577711)),
|
| 955 |
+
]
|
| 956 |
+
)
|
| 957 |
+
cross_images = [cross_transform(ori[0])]
|
| 958 |
+
# language
|
| 959 |
+
vision_token_num = (image_size // patch_size) * (image_size // patch_size) + 2
|
| 960 |
+
input_ids += [tokenizer.pad_token_id] * vision_token_num
|
| 961 |
+
token_type_ids += [VISION_TOKEN_TYPE] * vision_token_num
|
| 962 |
+
text_ids = tokenizer.encode(text, add_special_tokens=False)
|
| 963 |
+
|
| 964 |
+
input_ids += text_ids
|
| 965 |
+
token_type_ids += [LANGUAGE_TOKEN_TYPE] * len(text_ids)
|
| 966 |
+
attention_mask = [1] * len(input_ids)
|
| 967 |
+
|
| 968 |
+
return {
|
| 969 |
+
'input_ids': torch.tensor(input_ids, dtype=torch.long),
|
| 970 |
+
'token_type_ids': torch.tensor(token_type_ids, dtype=torch.long),
|
| 971 |
+
'attention_mask': torch.tensor(attention_mask, dtype=torch.long),
|
| 972 |
+
'images': images,
|
| 973 |
+
'cross_images': cross_images
|
| 974 |
+
}
|
visual.py
ADDED
|
@@ -0,0 +1,136 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import torch
|
| 2 |
+
from torch import nn
|
| 3 |
+
from argparse import Namespace
|
| 4 |
+
import xformers.ops as xops
|
| 5 |
+
from transformers.activations import ACT2FN
|
| 6 |
+
|
| 7 |
+
|
| 8 |
+
class PatchEmbedding(nn.Module):
|
| 9 |
+
def __init__(self, config):
|
| 10 |
+
super().__init__()
|
| 11 |
+
self.proj = nn.Conv2d(config.in_channels, config.hidden_size, kernel_size=config.patch_size, stride=config.patch_size)
|
| 12 |
+
self.cls_embedding = nn.Parameter(torch.zeros(1, config.hidden_size))
|
| 13 |
+
self.position_embedding = nn.Embedding(config.num_positions, config.hidden_size)
|
| 14 |
+
|
| 15 |
+
def forward(self, images: "tensor(B, C, H, W)") -> "tensor(B, L, D)":
|
| 16 |
+
x = self.proj(images)
|
| 17 |
+
x = x.flatten(2).transpose(1, 2)
|
| 18 |
+
cls_token = self.cls_embedding.expand(x.shape[0], -1, -1)
|
| 19 |
+
x = torch.cat((cls_token, x), dim=1)
|
| 20 |
+
x += self.position_embedding.weight.unsqueeze(0)
|
| 21 |
+
return x
|
| 22 |
+
|
| 23 |
+
|
| 24 |
+
class Attention(nn.Module):
|
| 25 |
+
def __init__(self, config):
|
| 26 |
+
super().__init__()
|
| 27 |
+
self.num_heads = config.num_heads
|
| 28 |
+
head_dim = config.hidden_size // config.num_heads
|
| 29 |
+
self.scale = head_dim ** -0.5
|
| 30 |
+
self.query_key_value = nn.Linear(config.hidden_size, config.hidden_size * 3)
|
| 31 |
+
self.dense = nn.Linear(config.hidden_size, config.hidden_size)
|
| 32 |
+
self.output_dropout = torch.nn.Dropout(config.dropout_prob)
|
| 33 |
+
|
| 34 |
+
def forward(self, x: "tensor(B, L, D)") -> "tensor(B, L, D)":
|
| 35 |
+
B, L, _ = x.shape
|
| 36 |
+
qkv = self.query_key_value(x)
|
| 37 |
+
qkv = qkv.reshape(B, L, 3, self.num_heads, -1).permute(2, 0, 1, 3, 4) # 3, B, L, H, D
|
| 38 |
+
q, k, v = qkv[0], qkv[1], qkv[2]
|
| 39 |
+
|
| 40 |
+
out = xops.memory_efficient_attention(
|
| 41 |
+
q, k, v, scale=self.scale,
|
| 42 |
+
)
|
| 43 |
+
output = self.dense(out.view(B, L, -1))
|
| 44 |
+
output = self.output_dropout(output)
|
| 45 |
+
return output
|
| 46 |
+
|
| 47 |
+
def attention(self, q, k, v):
|
| 48 |
+
attn_weights = torch.matmul(q * self.scale, k.transpose(-2, -1))
|
| 49 |
+
attn_weights = attn_weights.softmax(dim=-1)
|
| 50 |
+
output = torch.matmul(attn_weights, v)
|
| 51 |
+
return output
|
| 52 |
+
|
| 53 |
+
|
| 54 |
+
class MLP(nn.Module):
|
| 55 |
+
def __init__(self, config):
|
| 56 |
+
super().__init__()
|
| 57 |
+
self.config = config
|
| 58 |
+
self.activation_fn = ACT2FN[config.hidden_act]
|
| 59 |
+
self.fc1 = nn.Linear(config.hidden_size, config.intermediate_size)
|
| 60 |
+
self.fc2 = nn.Linear(config.intermediate_size, config.hidden_size)
|
| 61 |
+
|
| 62 |
+
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
| 63 |
+
x = self.fc1(x)
|
| 64 |
+
x = self.activation_fn(x)
|
| 65 |
+
x = self.fc2(x)
|
| 66 |
+
return x
|
| 67 |
+
|
| 68 |
+
|
| 69 |
+
class TransformerLayer(nn.Module):
|
| 70 |
+
def __init__(self, config):
|
| 71 |
+
super().__init__()
|
| 72 |
+
self.input_layernorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
|
| 73 |
+
self.attention = Attention(config)
|
| 74 |
+
self.mlp = MLP(config)
|
| 75 |
+
self.post_attention_layernorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
|
| 76 |
+
|
| 77 |
+
def forward(self, hidden_states):
|
| 78 |
+
attention_input = hidden_states
|
| 79 |
+
attention_output = self.input_layernorm(self.attention(attention_input))
|
| 80 |
+
hidden_states = attention_input + attention_output
|
| 81 |
+
mlp_input = hidden_states
|
| 82 |
+
mlp_output = self.post_attention_layernorm(self.mlp(mlp_input))
|
| 83 |
+
output = mlp_input + mlp_output
|
| 84 |
+
return output
|
| 85 |
+
|
| 86 |
+
|
| 87 |
+
class Transformer(nn.Module):
|
| 88 |
+
def __init__(self, config):
|
| 89 |
+
super().__init__()
|
| 90 |
+
self.layers = nn.ModuleList([TransformerLayer(config) for _ in range(config.num_hidden_layers)])
|
| 91 |
+
|
| 92 |
+
def forward(self, hidden_states):
|
| 93 |
+
for layer_module in self.layers:
|
| 94 |
+
hidden_states = layer_module(hidden_states)
|
| 95 |
+
return hidden_states
|
| 96 |
+
|
| 97 |
+
|
| 98 |
+
class GLU(nn.Module):
|
| 99 |
+
def __init__(self, config, in_features):
|
| 100 |
+
super().__init__()
|
| 101 |
+
self.linear_proj = nn.Linear(in_features, config.hidden_size, bias=False)
|
| 102 |
+
self.norm1 = nn.LayerNorm(config.hidden_size)
|
| 103 |
+
self.act1 = nn.GELU()
|
| 104 |
+
self.act2 = nn.functional.silu
|
| 105 |
+
self.dense_h_to_4h = nn.Linear(config.hidden_size, config.intermediate_size, bias=False)
|
| 106 |
+
self.gate_proj = nn.Linear(config.hidden_size, config.intermediate_size, bias=False)
|
| 107 |
+
self.dense_4h_to_h = nn.Linear(config.intermediate_size, config.hidden_size, bias=False)
|
| 108 |
+
|
| 109 |
+
def forward(self, x):
|
| 110 |
+
x = self.linear_proj(x)
|
| 111 |
+
x = self.act1(self.norm1(x))
|
| 112 |
+
x = self.act2(self.gate_proj(x)) * self.dense_h_to_4h(x)
|
| 113 |
+
x = self.dense_4h_to_h(x)
|
| 114 |
+
return x
|
| 115 |
+
|
| 116 |
+
|
| 117 |
+
class EVA2CLIPModel(nn.Module):
|
| 118 |
+
def __init__(self, config):
|
| 119 |
+
super().__init__()
|
| 120 |
+
vision_config = Namespace(**config.vision_config)
|
| 121 |
+
self.patch_embedding = PatchEmbedding(vision_config)
|
| 122 |
+
self.transformer = Transformer(vision_config)
|
| 123 |
+
self.linear_proj = GLU(config, in_features=vision_config.hidden_size)
|
| 124 |
+
self.boi = nn.Parameter(torch.zeros(1, 1, config.hidden_size))
|
| 125 |
+
self.eoi = nn.Parameter(torch.zeros(1, 1, config.hidden_size))
|
| 126 |
+
self.pos_embed = nn.Parameter(torch.zeros((vision_config.image_size // vision_config.patch_size) ** 2, vision_config.hidden_size))
|
| 127 |
+
|
| 128 |
+
def forward(self, images: "tensor(B, C, H, W)") -> "tensor(B, L, D)":
|
| 129 |
+
x = self.patch_embedding(images)
|
| 130 |
+
x = self.transformer(x)
|
| 131 |
+
x = x[:, 1:]
|
| 132 |
+
x = self.linear_proj(x + self.pos_embed.to(x.device).unsqueeze(0))
|
| 133 |
+
boi = self.boi.to(x.device).expand(x.shape[0], -1, -1)
|
| 134 |
+
eoi = self.eoi.to(x.device).expand(x.shape[0], -1, -1)
|
| 135 |
+
x = torch.cat((boi, x, eoi), dim=1)
|
| 136 |
+
return x
|