Upload folder using huggingface_hub
Browse files- config.json +58 -0
- configuration_cogagent.py +51 -0
- cross_visual.py +797 -0
- generation_config.json +7 -0
- modeling_cogagent.py +974 -0
- pytorch_model-00001-of-00004.bin +3 -0
- pytorch_model-00002-of-00004.bin +3 -0
- pytorch_model-00003-of-00004.bin +3 -0
- pytorch_model-00004-of-00004.bin +3 -0
- pytorch_model.bin.index.json +0 -0
- special_tokens_map.json +30 -0
- tokenizer.model +3 -0
- tokenizer_config.json +43 -0
- visual.py +136 -0
config.json
ADDED
@@ -0,0 +1,58 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_name_or_path": "/content/d2c_hf_bin",
|
3 |
+
"architectures": [
|
4 |
+
"CogAgentForCausalLM"
|
5 |
+
],
|
6 |
+
"auto_map": {
|
7 |
+
"AutoConfig": "configuration_cogagent.CogAgentConfig",
|
8 |
+
"AutoModelForCausalLM": "modeling_cogagent.CogAgentForCausalLM"
|
9 |
+
},
|
10 |
+
"bos_token_id": 1,
|
11 |
+
"cross_compute_hidden_size": 1024,
|
12 |
+
"cross_hidden_size": 1024,
|
13 |
+
"cross_image_size": 1120,
|
14 |
+
"eos_token_id": 2,
|
15 |
+
"hidden_act": "silu",
|
16 |
+
"hidden_size": 4096,
|
17 |
+
"initializer_range": 0.02,
|
18 |
+
"intermediate_size": 11008,
|
19 |
+
"max_position_embeddings": 2048,
|
20 |
+
"num_attention_heads": 32,
|
21 |
+
"num_hidden_layers": 32,
|
22 |
+
"pad_token_id": 0,
|
23 |
+
"quantization_config": {
|
24 |
+
"_load_in_4bit": false,
|
25 |
+
"_load_in_8bit": true,
|
26 |
+
"bnb_4bit_compute_dtype": "float32",
|
27 |
+
"bnb_4bit_quant_storage": "uint8",
|
28 |
+
"bnb_4bit_quant_type": "fp4",
|
29 |
+
"bnb_4bit_use_double_quant": false,
|
30 |
+
"llm_int8_enable_fp32_cpu_offload": false,
|
31 |
+
"llm_int8_has_fp16_weight": false,
|
32 |
+
"llm_int8_skip_modules": null,
|
33 |
+
"llm_int8_threshold": 6.0,
|
34 |
+
"load_in_4bit": false,
|
35 |
+
"load_in_8bit": true,
|
36 |
+
"quant_method": "bitsandbytes"
|
37 |
+
},
|
38 |
+
"rms_norm_eps": 1e-05,
|
39 |
+
"template_version": "chat",
|
40 |
+
"tie_word_embeddings": false,
|
41 |
+
"torch_dtype": "float16",
|
42 |
+
"transformers_version": "4.41.0.dev0",
|
43 |
+
"use_cache": true,
|
44 |
+
"vision_config": {
|
45 |
+
"dropout_prob": 0.0,
|
46 |
+
"hidden_act": "gelu",
|
47 |
+
"hidden_size": 1792,
|
48 |
+
"image_size": 224,
|
49 |
+
"in_channels": 3,
|
50 |
+
"intermediate_size": 15360,
|
51 |
+
"layer_norm_eps": 1e-06,
|
52 |
+
"num_heads": 16,
|
53 |
+
"num_hidden_layers": 63,
|
54 |
+
"num_positions": 257,
|
55 |
+
"patch_size": 14
|
56 |
+
},
|
57 |
+
"vocab_size": 32000
|
58 |
+
}
|
configuration_cogagent.py
ADDED
@@ -0,0 +1,51 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from typing import Literal
|
2 |
+
from transformers import PretrainedConfig
|
3 |
+
|
4 |
+
|
5 |
+
class CogAgentConfig(PretrainedConfig):
|
6 |
+
_auto_class = "AutoConfig"
|
7 |
+
|
8 |
+
def __init__(
|
9 |
+
self,
|
10 |
+
vocab_size=32000,
|
11 |
+
hidden_size=4096,
|
12 |
+
cross_hidden_size=1024,
|
13 |
+
cross_compute_hidden_size=1024,
|
14 |
+
cross_image_size=1120,
|
15 |
+
intermediate_size=11008,
|
16 |
+
num_hidden_layers=32,
|
17 |
+
num_attention_heads=32,
|
18 |
+
hidden_act='silu',
|
19 |
+
max_position_embeddings=2048,
|
20 |
+
initializer_range=0.02,
|
21 |
+
rms_norm_eps=1e-06,
|
22 |
+
template_version: Literal["base", "chat"] = "chat",
|
23 |
+
|
24 |
+
pad_token_id=0,
|
25 |
+
bos_token_id=1,
|
26 |
+
eos_token_id=2,
|
27 |
+
tie_word_embeddings=False,
|
28 |
+
use_cache=True,
|
29 |
+
**kwargs,
|
30 |
+
):
|
31 |
+
self.hidden_size = hidden_size
|
32 |
+
self.cross_hidden_size = cross_hidden_size
|
33 |
+
self.cross_compute_hidden_size = cross_compute_hidden_size
|
34 |
+
self.cross_image_size = cross_image_size
|
35 |
+
self.intermediate_size = intermediate_size
|
36 |
+
self.num_attention_heads = num_attention_heads
|
37 |
+
self.max_position_embeddings = max_position_embeddings
|
38 |
+
self.rms_norm_eps = rms_norm_eps
|
39 |
+
self.initializer_range = initializer_range
|
40 |
+
self.vocab_size = vocab_size
|
41 |
+
self.num_hidden_layers = num_hidden_layers
|
42 |
+
self.hidden_act = hidden_act
|
43 |
+
self.template_version = template_version
|
44 |
+
self.use_cache = use_cache
|
45 |
+
super().__init__(
|
46 |
+
pad_token_id=pad_token_id,
|
47 |
+
bos_token_id=bos_token_id,
|
48 |
+
eos_token_id=eos_token_id,
|
49 |
+
tie_word_embeddings=tie_word_embeddings,
|
50 |
+
**kwargs,
|
51 |
+
)
|
cross_visual.py
ADDED
@@ -0,0 +1,797 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from math import pi
|
2 |
+
import torch
|
3 |
+
from torch import nn
|
4 |
+
from einops import rearrange, repeat
|
5 |
+
import logging
|
6 |
+
|
7 |
+
def broadcat(tensors, dim = -1):
|
8 |
+
num_tensors = len(tensors)
|
9 |
+
shape_lens = set(list(map(lambda t: len(t.shape), tensors)))
|
10 |
+
assert len(shape_lens) == 1, 'tensors must all have the same number of dimensions'
|
11 |
+
shape_len = list(shape_lens)[0]
|
12 |
+
dim = (dim + shape_len) if dim < 0 else dim
|
13 |
+
dims = list(zip(*map(lambda t: list(t.shape), tensors)))
|
14 |
+
expandable_dims = [(i, val) for i, val in enumerate(dims) if i != dim]
|
15 |
+
assert all([*map(lambda t: len(set(t[1])) <= 2, expandable_dims)]), 'invalid dimensions for broadcastable concatentation'
|
16 |
+
max_dims = list(map(lambda t: (t[0], max(t[1])), expandable_dims))
|
17 |
+
expanded_dims = list(map(lambda t: (t[0], (t[1],) * num_tensors), max_dims))
|
18 |
+
expanded_dims.insert(dim, (dim, dims[dim]))
|
19 |
+
expandable_shapes = list(zip(*map(lambda t: t[1], expanded_dims)))
|
20 |
+
tensors = list(map(lambda t: t[0].expand(*t[1]), zip(tensors, expandable_shapes)))
|
21 |
+
return torch.cat(tensors, dim = dim)
|
22 |
+
|
23 |
+
def rotate_half(x):
|
24 |
+
x = rearrange(x, '... (d r) -> ... d r', r = 2)
|
25 |
+
x1, x2 = x.unbind(dim = -1)
|
26 |
+
x = torch.stack((-x2, x1), dim = -1)
|
27 |
+
return rearrange(x, '... d r -> ... (d r)')
|
28 |
+
|
29 |
+
class VisionRotaryEmbeddingFast(nn.Module):
|
30 |
+
def __init__(
|
31 |
+
self,
|
32 |
+
dim,
|
33 |
+
pt_seq_len,
|
34 |
+
ft_seq_len=None,
|
35 |
+
custom_freqs = None,
|
36 |
+
freqs_for = 'lang',
|
37 |
+
theta = 10000,
|
38 |
+
max_freq = 10,
|
39 |
+
num_freqs = 1,
|
40 |
+
patch_dropout = 0.
|
41 |
+
):
|
42 |
+
super().__init__()
|
43 |
+
if custom_freqs:
|
44 |
+
freqs = custom_freqs
|
45 |
+
elif freqs_for == 'lang':
|
46 |
+
freqs = 1. / (theta ** (torch.arange(0, dim, 2)[:(dim // 2)].float() / dim))
|
47 |
+
elif freqs_for == 'pixel':
|
48 |
+
freqs = torch.linspace(1., max_freq / 2, dim // 2) * pi
|
49 |
+
elif freqs_for == 'constant':
|
50 |
+
freqs = torch.ones(num_freqs).float()
|
51 |
+
else:
|
52 |
+
raise ValueError(f'unknown modality {freqs_for}')
|
53 |
+
|
54 |
+
if ft_seq_len is None: ft_seq_len = pt_seq_len
|
55 |
+
t = torch.arange(ft_seq_len) / ft_seq_len * pt_seq_len
|
56 |
+
|
57 |
+
freqs = torch.einsum('..., f -> ... f', t, freqs)
|
58 |
+
freqs = repeat(freqs, '... n -> ... (n r)', r = 2)
|
59 |
+
freqs = broadcat((freqs[:, None, :], freqs[None, :, :]), dim = -1)
|
60 |
+
|
61 |
+
freqs_cos = freqs.cos().view(-1, freqs.shape[-1])
|
62 |
+
freqs_sin = freqs.sin().view(-1, freqs.shape[-1])
|
63 |
+
|
64 |
+
self.patch_dropout = patch_dropout
|
65 |
+
|
66 |
+
self.register_buffer("freqs_cos", freqs_cos)
|
67 |
+
self.register_buffer("freqs_sin", freqs_sin)
|
68 |
+
|
69 |
+
logging.info(f'Shape of rope freq: {self.freqs_cos.shape}')
|
70 |
+
|
71 |
+
def forward(self, t, patch_indices_keep=None):
|
72 |
+
if patch_indices_keep is not None:
|
73 |
+
batch = t.size()[0]
|
74 |
+
batch_indices = torch.arange(batch)
|
75 |
+
batch_indices = batch_indices[..., None]
|
76 |
+
|
77 |
+
freqs_cos = repeat(self.freqs_cos, 'i j -> n i m j', n=t.shape[0], m=t.shape[1])
|
78 |
+
freqs_sin = repeat(self.freqs_sin, 'i j -> n i m j', n=t.shape[0], m=t.shape[1])
|
79 |
+
|
80 |
+
freqs_cos = freqs_cos[batch_indices, patch_indices_keep]
|
81 |
+
freqs_cos = rearrange(freqs_cos, 'n i m j -> n m i j')
|
82 |
+
freqs_sin = freqs_sin[batch_indices, patch_indices_keep]
|
83 |
+
freqs_sin = rearrange(freqs_sin, 'n i m j -> n m i j')
|
84 |
+
|
85 |
+
return t * freqs_cos + rotate_half(t) * freqs_sin
|
86 |
+
|
87 |
+
return t * self.freqs_cos + rotate_half(t) * self.freqs_sin
|
88 |
+
|
89 |
+
import torch.nn as nn
|
90 |
+
import os
|
91 |
+
from dataclasses import dataclass
|
92 |
+
from typing import Optional, Tuple, Union
|
93 |
+
from functools import partial
|
94 |
+
|
95 |
+
import numpy as np
|
96 |
+
import torch
|
97 |
+
import torch.nn.functional as F
|
98 |
+
from torch import nn
|
99 |
+
|
100 |
+
# --------------------------------------------------------
|
101 |
+
# Adapted from https://github.com/microsoft/unilm/tree/master/beit
|
102 |
+
# --------------------------------------------------------
|
103 |
+
import math
|
104 |
+
import os
|
105 |
+
from functools import partial
|
106 |
+
import torch
|
107 |
+
import torch.nn as nn
|
108 |
+
import torch.nn.functional as F
|
109 |
+
import logging
|
110 |
+
try:
|
111 |
+
from timm.models.layers import drop_path, to_2tuple, trunc_normal_
|
112 |
+
except:
|
113 |
+
from timm.layers import drop_path, to_2tuple, trunc_normal_
|
114 |
+
|
115 |
+
class PatchDropout(nn.Module):
|
116 |
+
"""
|
117 |
+
https://arxiv.org/abs/2212.00794
|
118 |
+
"""
|
119 |
+
|
120 |
+
def __init__(self, prob, exclude_first_token=True):
|
121 |
+
super().__init__()
|
122 |
+
assert 0 <= prob < 1.
|
123 |
+
self.prob = prob
|
124 |
+
self.exclude_first_token = exclude_first_token # exclude CLS token
|
125 |
+
logging.info(f"os.getenv('RoPE')={os.getenv('RoPE')}")
|
126 |
+
|
127 |
+
def forward(self, x):
|
128 |
+
if not self.training or self.prob == 0.:
|
129 |
+
return x
|
130 |
+
|
131 |
+
if self.exclude_first_token:
|
132 |
+
cls_tokens, x = x[:, :1], x[:, 1:]
|
133 |
+
else:
|
134 |
+
cls_tokens = torch.jit.annotate(torch.Tensor, x[:, :1])
|
135 |
+
|
136 |
+
batch = x.size()[0]
|
137 |
+
num_tokens = x.size()[1]
|
138 |
+
|
139 |
+
batch_indices = torch.arange(batch)
|
140 |
+
batch_indices = batch_indices[..., None]
|
141 |
+
|
142 |
+
keep_prob = 1 - self.prob
|
143 |
+
num_patches_keep = max(1, int(num_tokens * keep_prob))
|
144 |
+
|
145 |
+
rand = torch.randn(batch, num_tokens)
|
146 |
+
patch_indices_keep = rand.topk(num_patches_keep, dim=-1).indices
|
147 |
+
|
148 |
+
x = x[batch_indices, patch_indices_keep]
|
149 |
+
|
150 |
+
if self.exclude_first_token:
|
151 |
+
x = torch.cat((cls_tokens, x), dim=1)
|
152 |
+
|
153 |
+
if self.training and os.getenv('RoPE') == '1':
|
154 |
+
return x, patch_indices_keep
|
155 |
+
|
156 |
+
return x
|
157 |
+
|
158 |
+
if os.getenv('ENV_TYPE') == 'deepspeed':
|
159 |
+
try:
|
160 |
+
from deepspeed.runtime.activation_checkpointing.checkpointing import checkpoint
|
161 |
+
except:
|
162 |
+
from torch.utils.checkpoint import checkpoint
|
163 |
+
else:
|
164 |
+
from torch.utils.checkpoint import checkpoint
|
165 |
+
|
166 |
+
import xformers.ops as xops
|
167 |
+
|
168 |
+
class DropPath(nn.Module):
|
169 |
+
"""Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks).
|
170 |
+
"""
|
171 |
+
def __init__(self, drop_prob=None):
|
172 |
+
super(DropPath, self).__init__()
|
173 |
+
self.drop_prob = drop_prob
|
174 |
+
|
175 |
+
def forward(self, x):
|
176 |
+
return drop_path(x, self.drop_prob, self.training)
|
177 |
+
|
178 |
+
def extra_repr(self) -> str:
|
179 |
+
return 'p={}'.format(self.drop_prob)
|
180 |
+
|
181 |
+
|
182 |
+
class Mlp(nn.Module):
|
183 |
+
def __init__(
|
184 |
+
self,
|
185 |
+
in_features,
|
186 |
+
hidden_features=None,
|
187 |
+
out_features=None,
|
188 |
+
act_layer=nn.GELU,
|
189 |
+
norm_layer=nn.LayerNorm,
|
190 |
+
drop=0.,
|
191 |
+
subln=False,
|
192 |
+
|
193 |
+
):
|
194 |
+
super().__init__()
|
195 |
+
out_features = out_features or in_features
|
196 |
+
hidden_features = hidden_features or in_features
|
197 |
+
self.fc1 = nn.Linear(in_features, hidden_features)
|
198 |
+
self.act = act_layer()
|
199 |
+
|
200 |
+
self.ffn_ln = norm_layer(hidden_features) if subln else nn.Identity()
|
201 |
+
|
202 |
+
self.fc2 = nn.Linear(hidden_features, out_features)
|
203 |
+
self.drop = nn.Dropout(drop)
|
204 |
+
|
205 |
+
def forward(self, x):
|
206 |
+
x = self.fc1(x)
|
207 |
+
x = self.act(x)
|
208 |
+
# x = self.drop(x)
|
209 |
+
# commit this for the orignal BERT implement
|
210 |
+
x = self.ffn_ln(x)
|
211 |
+
|
212 |
+
x = self.fc2(x)
|
213 |
+
x = self.drop(x)
|
214 |
+
return x
|
215 |
+
|
216 |
+
class SwiGLU(nn.Module):
|
217 |
+
def __init__(self, in_features, hidden_features=None, out_features=None, act_layer=nn.SiLU, drop=0.,
|
218 |
+
norm_layer=nn.LayerNorm, subln=False):
|
219 |
+
super().__init__()
|
220 |
+
out_features = out_features or in_features
|
221 |
+
hidden_features = hidden_features or in_features
|
222 |
+
|
223 |
+
self.w1 = nn.Linear(in_features, hidden_features)
|
224 |
+
self.w2 = nn.Linear(in_features, hidden_features)
|
225 |
+
|
226 |
+
self.act = act_layer()
|
227 |
+
self.ffn_ln = norm_layer(hidden_features) if subln else nn.Identity()
|
228 |
+
self.w3 = nn.Linear(hidden_features, out_features)
|
229 |
+
|
230 |
+
self.drop = nn.Dropout(drop)
|
231 |
+
|
232 |
+
def forward(self, x):
|
233 |
+
x1 = self.w1(x)
|
234 |
+
x2 = self.w2(x)
|
235 |
+
hidden = self.act(x1) * x2
|
236 |
+
x = self.ffn_ln(hidden)
|
237 |
+
x = self.w3(x)
|
238 |
+
x = self.drop(x)
|
239 |
+
return x
|
240 |
+
|
241 |
+
class Attention(nn.Module):
|
242 |
+
def __init__(
|
243 |
+
self, dim, num_heads=8, qkv_bias=False, qk_scale=None, attn_drop=0.,
|
244 |
+
proj_drop=0., window_size=None, attn_head_dim=None, xattn=False, rope=None, subln=False, norm_layer=nn.LayerNorm):
|
245 |
+
super().__init__()
|
246 |
+
self.num_heads = num_heads
|
247 |
+
head_dim = dim // num_heads
|
248 |
+
if attn_head_dim is not None:
|
249 |
+
head_dim = attn_head_dim
|
250 |
+
all_head_dim = head_dim * self.num_heads
|
251 |
+
self.scale = qk_scale or head_dim ** -0.5
|
252 |
+
|
253 |
+
self.subln = subln
|
254 |
+
if self.subln:
|
255 |
+
self.q_proj = nn.Linear(dim, all_head_dim, bias=False)
|
256 |
+
self.k_proj = nn.Linear(dim, all_head_dim, bias=False)
|
257 |
+
self.v_proj = nn.Linear(dim, all_head_dim, bias=False)
|
258 |
+
else:
|
259 |
+
self.qkv = nn.Linear(dim, all_head_dim * 3, bias=False)
|
260 |
+
|
261 |
+
if qkv_bias:
|
262 |
+
self.q_bias = nn.Parameter(torch.zeros(all_head_dim))
|
263 |
+
self.v_bias = nn.Parameter(torch.zeros(all_head_dim))
|
264 |
+
else:
|
265 |
+
self.q_bias = None
|
266 |
+
self.v_bias = None
|
267 |
+
|
268 |
+
if window_size:
|
269 |
+
self.window_size = window_size
|
270 |
+
self.num_relative_distance = (2 * window_size[0] - 1) * (2 * window_size[1] - 1) + 3
|
271 |
+
self.relative_position_bias_table = nn.Parameter(
|
272 |
+
torch.zeros(self.num_relative_distance, num_heads)) # 2*Wh-1 * 2*Ww-1, nH
|
273 |
+
# cls to token & token 2 cls & cls to cls
|
274 |
+
|
275 |
+
# get pair-wise relative position index for each token inside the window
|
276 |
+
coords_h = torch.arange(window_size[0])
|
277 |
+
coords_w = torch.arange(window_size[1])
|
278 |
+
coords = torch.stack(torch.meshgrid([coords_h, coords_w])) # 2, Wh, Ww
|
279 |
+
coords_flatten = torch.flatten(coords, 1) # 2, Wh*Ww
|
280 |
+
relative_coords = coords_flatten[:, :, None] - coords_flatten[:, None, :] # 2, Wh*Ww, Wh*Ww
|
281 |
+
relative_coords = relative_coords.permute(1, 2, 0).contiguous() # Wh*Ww, Wh*Ww, 2
|
282 |
+
relative_coords[:, :, 0] += window_size[0] - 1 # shift to start from 0
|
283 |
+
relative_coords[:, :, 1] += window_size[1] - 1
|
284 |
+
relative_coords[:, :, 0] *= 2 * window_size[1] - 1
|
285 |
+
relative_position_index = \
|
286 |
+
torch.zeros(size=(window_size[0] * window_size[1] + 1, ) * 2, dtype=relative_coords.dtype)
|
287 |
+
relative_position_index[1:, 1:] = relative_coords.sum(-1) # Wh*Ww, Wh*Ww
|
288 |
+
relative_position_index[0, 0:] = self.num_relative_distance - 3
|
289 |
+
relative_position_index[0:, 0] = self.num_relative_distance - 2
|
290 |
+
relative_position_index[0, 0] = self.num_relative_distance - 1
|
291 |
+
|
292 |
+
self.register_buffer("relative_position_index", relative_position_index)
|
293 |
+
else:
|
294 |
+
self.window_size = None
|
295 |
+
self.relative_position_bias_table = None
|
296 |
+
self.relative_position_index = None
|
297 |
+
|
298 |
+
self.attn_drop = nn.Dropout(attn_drop)
|
299 |
+
self.inner_attn_ln = norm_layer(all_head_dim) if subln else nn.Identity()
|
300 |
+
# self.proj = nn.Linear(all_head_dim, all_head_dim)
|
301 |
+
self.proj = nn.Linear(all_head_dim, dim)
|
302 |
+
self.proj_drop = nn.Dropout(proj_drop)
|
303 |
+
self.xattn = xattn
|
304 |
+
self.xattn_drop = attn_drop
|
305 |
+
|
306 |
+
self.rope = rope
|
307 |
+
|
308 |
+
def forward(self, x, rel_pos_bias=None, attn_mask=None):
|
309 |
+
B, N, C = x.shape
|
310 |
+
if self.subln:
|
311 |
+
if self.q_proj.weight.dtype == torch.uint8:
|
312 |
+
import bitsandbytes as bnb
|
313 |
+
q = bnb.matmul_4bit(x, self.q_proj.weight.t(), bias=self.q_bias, quant_state=self.q_proj.weight.quant_state)
|
314 |
+
k = bnb.matmul_4bit(x, self.k_proj.weight.t(), bias=None, quant_state=self.k_proj.weight.quant_state)
|
315 |
+
v = bnb.matmul_4bit(x, self.v_proj.weight.t(), bias=self.v_bias, quant_state=self.v_proj.weight.quant_state)
|
316 |
+
else:
|
317 |
+
q = F.linear(input=x, weight=self.q_proj.weight, bias=self.q_bias)
|
318 |
+
k = F.linear(input=x, weight=self.k_proj.weight, bias=None)
|
319 |
+
v = F.linear(input=x, weight=self.v_proj.weight, bias=self.v_bias)
|
320 |
+
|
321 |
+
q = q.reshape(B, N, self.num_heads, -1).permute(0, 2, 1, 3) # B, num_heads, N, C
|
322 |
+
k = k.reshape(B, N, self.num_heads, -1).permute(0, 2, 1, 3)
|
323 |
+
v = v.reshape(B, N, self.num_heads, -1).permute(0, 2, 1, 3)
|
324 |
+
else:
|
325 |
+
|
326 |
+
qkv_bias = None
|
327 |
+
if self.q_bias is not None:
|
328 |
+
qkv_bias = torch.cat((self.q_bias, torch.zeros_like(self.v_bias, requires_grad=False), self.v_bias))
|
329 |
+
|
330 |
+
qkv = F.linear(input=x, weight=self.qkv.weight, bias=qkv_bias)
|
331 |
+
qkv = qkv.reshape(B, N, 3, self.num_heads, -1).permute(2, 0, 3, 1, 4) # 3, B, num_heads, N, C
|
332 |
+
q, k, v = qkv[0], qkv[1], qkv[2]
|
333 |
+
|
334 |
+
if self.rope:
|
335 |
+
# slightly fast impl
|
336 |
+
q_t = q[:, :, 1:, :]
|
337 |
+
ro_q_t = self.rope(q_t)
|
338 |
+
q = torch.cat((q[:, :, :1, :], ro_q_t), -2).type_as(v)
|
339 |
+
|
340 |
+
k_t = k[:, :, 1:, :]
|
341 |
+
ro_k_t = self.rope(k_t)
|
342 |
+
k = torch.cat((k[:, :, :1, :], ro_k_t), -2).type_as(v)
|
343 |
+
|
344 |
+
if self.xattn:
|
345 |
+
q = q.permute(0, 2, 1, 3) # B, num_heads, N, C -> B, N, num_heads, C
|
346 |
+
k = k.permute(0, 2, 1, 3)
|
347 |
+
v = v.permute(0, 2, 1, 3)
|
348 |
+
|
349 |
+
x = xops.memory_efficient_attention(
|
350 |
+
q, k, v,
|
351 |
+
p=self.xattn_drop,
|
352 |
+
scale=self.scale,
|
353 |
+
)
|
354 |
+
x = x.reshape(B, N, -1)
|
355 |
+
x = self.inner_attn_ln(x)
|
356 |
+
x = self.proj(x)
|
357 |
+
x = self.proj_drop(x)
|
358 |
+
else:
|
359 |
+
q = q * self.scale
|
360 |
+
attn = (q @ k.transpose(-2, -1))
|
361 |
+
|
362 |
+
if self.relative_position_bias_table is not None:
|
363 |
+
relative_position_bias = \
|
364 |
+
self.relative_position_bias_table[self.relative_position_index.view(-1)].view(
|
365 |
+
self.window_size[0] * self.window_size[1] + 1,
|
366 |
+
self.window_size[0] * self.window_size[1] + 1, -1) # Wh*Ww,Wh*Ww,nH
|
367 |
+
relative_position_bias = relative_position_bias.permute(2, 0, 1).contiguous() # nH, Wh*Ww, Wh*Ww
|
368 |
+
attn = attn + relative_position_bias.unsqueeze(0).type_as(attn)
|
369 |
+
|
370 |
+
if rel_pos_bias is not None:
|
371 |
+
attn = attn + rel_pos_bias.type_as(attn)
|
372 |
+
|
373 |
+
if attn_mask is not None:
|
374 |
+
attn_mask = attn_mask.bool()
|
375 |
+
attn = attn.masked_fill(~attn_mask[:, None, None, :], float("-inf"))
|
376 |
+
|
377 |
+
attn = attn.softmax(dim=-1)
|
378 |
+
attn = self.attn_drop(attn)
|
379 |
+
|
380 |
+
x = (attn @ v).transpose(1, 2).reshape(B, N, -1)
|
381 |
+
x = self.inner_attn_ln(x)
|
382 |
+
x = self.proj(x)
|
383 |
+
x = self.proj_drop(x)
|
384 |
+
return x
|
385 |
+
|
386 |
+
|
387 |
+
class Block(nn.Module):
|
388 |
+
|
389 |
+
def __init__(self, dim, num_heads, mlp_ratio=4., qkv_bias=False, qk_scale=None, drop=0., attn_drop=0.,
|
390 |
+
drop_path=0., init_values=None, act_layer=nn.GELU, norm_layer=nn.LayerNorm,
|
391 |
+
window_size=None, attn_head_dim=None, xattn=False, rope=None, postnorm=False,
|
392 |
+
subln=False, naiveswiglu=False):
|
393 |
+
super().__init__()
|
394 |
+
self.norm1 = norm_layer(dim)
|
395 |
+
self.attn = Attention(
|
396 |
+
dim, num_heads=num_heads, qkv_bias=qkv_bias, qk_scale=qk_scale,
|
397 |
+
attn_drop=attn_drop, proj_drop=drop, window_size=window_size, attn_head_dim=attn_head_dim,
|
398 |
+
xattn=xattn, rope=rope, subln=subln, norm_layer=norm_layer)
|
399 |
+
# NOTE: drop path for stochastic depth, we shall see if this is better than dropout here
|
400 |
+
self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity()
|
401 |
+
self.norm2 = norm_layer(dim)
|
402 |
+
mlp_hidden_dim = int(dim * mlp_ratio)
|
403 |
+
|
404 |
+
if naiveswiglu:
|
405 |
+
self.mlp = SwiGLU(
|
406 |
+
in_features=dim,
|
407 |
+
hidden_features=mlp_hidden_dim,
|
408 |
+
subln=subln,
|
409 |
+
norm_layer=norm_layer,
|
410 |
+
)
|
411 |
+
else:
|
412 |
+
self.mlp = Mlp(
|
413 |
+
in_features=dim,
|
414 |
+
hidden_features=mlp_hidden_dim,
|
415 |
+
act_layer=act_layer,
|
416 |
+
subln=subln,
|
417 |
+
drop=drop
|
418 |
+
)
|
419 |
+
|
420 |
+
if init_values is not None and init_values > 0:
|
421 |
+
self.gamma_1 = nn.Parameter(init_values * torch.ones((dim)),requires_grad=True)
|
422 |
+
self.gamma_2 = nn.Parameter(init_values * torch.ones((dim)),requires_grad=True)
|
423 |
+
else:
|
424 |
+
self.gamma_1, self.gamma_2 = None, None
|
425 |
+
|
426 |
+
self.postnorm = postnorm
|
427 |
+
|
428 |
+
def forward(self, x, rel_pos_bias=None, attn_mask=None):
|
429 |
+
if self.gamma_1 is None:
|
430 |
+
if self.postnorm:
|
431 |
+
x = x + self.drop_path(self.norm1(self.attn(x, rel_pos_bias=rel_pos_bias, attn_mask=attn_mask)))
|
432 |
+
x = x + self.drop_path(self.norm2(self.mlp(x)))
|
433 |
+
else:
|
434 |
+
x = x + self.drop_path(self.attn(self.norm1(x), rel_pos_bias=rel_pos_bias, attn_mask=attn_mask))
|
435 |
+
x = x + self.drop_path(self.mlp(self.norm2(x)))
|
436 |
+
else:
|
437 |
+
if self.postnorm:
|
438 |
+
x = x + self.drop_path(self.gamma_1 * self.norm1(self.attn(x, rel_pos_bias=rel_pos_bias, attn_mask=attn_mask)))
|
439 |
+
x = x + self.drop_path(self.gamma_2 * self.norm2(self.mlp(x)))
|
440 |
+
else:
|
441 |
+
x = x + self.drop_path(self.gamma_1 * self.attn(self.norm1(x), rel_pos_bias=rel_pos_bias, attn_mask=attn_mask))
|
442 |
+
x = x + self.drop_path(self.gamma_2 * self.mlp(self.norm2(x)))
|
443 |
+
return x
|
444 |
+
|
445 |
+
|
446 |
+
class PatchEmbed(nn.Module):
|
447 |
+
""" Image to Patch Embedding
|
448 |
+
"""
|
449 |
+
def __init__(self, img_size=224, patch_size=16, in_chans=3, embed_dim=768):
|
450 |
+
super().__init__()
|
451 |
+
img_size = to_2tuple(img_size)
|
452 |
+
patch_size = to_2tuple(patch_size)
|
453 |
+
num_patches = (img_size[1] // patch_size[1]) * (img_size[0] // patch_size[0])
|
454 |
+
self.patch_shape = (img_size[0] // patch_size[0], img_size[1] // patch_size[1])
|
455 |
+
self.img_size = img_size
|
456 |
+
self.patch_size = patch_size
|
457 |
+
self.num_patches = num_patches
|
458 |
+
|
459 |
+
self.proj = nn.Conv2d(in_chans, embed_dim, kernel_size=patch_size, stride=patch_size)
|
460 |
+
|
461 |
+
def forward(self, x, **kwargs):
|
462 |
+
B, C, H, W = x.shape
|
463 |
+
# FIXME look at relaxing size constraints
|
464 |
+
assert H == self.img_size[0] and W == self.img_size[1], \
|
465 |
+
f"Input image size ({H}*{W}) doesn't match model ({self.img_size[0]}*{self.img_size[1]})."
|
466 |
+
x = self.proj(x).flatten(2).transpose(1, 2)
|
467 |
+
return x
|
468 |
+
|
469 |
+
|
470 |
+
class RelativePositionBias(nn.Module):
|
471 |
+
|
472 |
+
def __init__(self, window_size, num_heads):
|
473 |
+
super().__init__()
|
474 |
+
self.window_size = window_size
|
475 |
+
self.num_relative_distance = (2 * window_size[0] - 1) * (2 * window_size[1] - 1) + 3
|
476 |
+
self.relative_position_bias_table = nn.Parameter(
|
477 |
+
torch.zeros(self.num_relative_distance, num_heads)) # 2*Wh-1 * 2*Ww-1, nH
|
478 |
+
# cls to token & token 2 cls & cls to cls
|
479 |
+
|
480 |
+
# get pair-wise relative position index for each token inside the window
|
481 |
+
coords_h = torch.arange(window_size[0])
|
482 |
+
coords_w = torch.arange(window_size[1])
|
483 |
+
coords = torch.stack(torch.meshgrid([coords_h, coords_w])) # 2, Wh, Ww
|
484 |
+
coords_flatten = torch.flatten(coords, 1) # 2, Wh*Ww
|
485 |
+
relative_coords = coords_flatten[:, :, None] - coords_flatten[:, None, :] # 2, Wh*Ww, Wh*Ww
|
486 |
+
relative_coords = relative_coords.permute(1, 2, 0).contiguous() # Wh*Ww, Wh*Ww, 2
|
487 |
+
relative_coords[:, :, 0] += window_size[0] - 1 # shift to start from 0
|
488 |
+
relative_coords[:, :, 1] += window_size[1] - 1
|
489 |
+
relative_coords[:, :, 0] *= 2 * window_size[1] - 1
|
490 |
+
relative_position_index = \
|
491 |
+
torch.zeros(size=(window_size[0] * window_size[1] + 1,) * 2, dtype=relative_coords.dtype)
|
492 |
+
relative_position_index[1:, 1:] = relative_coords.sum(-1) # Wh*Ww, Wh*Ww
|
493 |
+
relative_position_index[0, 0:] = self.num_relative_distance - 3
|
494 |
+
relative_position_index[0:, 0] = self.num_relative_distance - 2
|
495 |
+
relative_position_index[0, 0] = self.num_relative_distance - 1
|
496 |
+
|
497 |
+
self.register_buffer("relative_position_index", relative_position_index)
|
498 |
+
|
499 |
+
def forward(self):
|
500 |
+
relative_position_bias = \
|
501 |
+
self.relative_position_bias_table[self.relative_position_index.view(-1)].view(
|
502 |
+
self.window_size[0] * self.window_size[1] + 1,
|
503 |
+
self.window_size[0] * self.window_size[1] + 1, -1) # Wh*Ww,Wh*Ww,nH
|
504 |
+
return relative_position_bias.permute(2, 0, 1).contiguous() # nH, Wh*Ww, Wh*Ww
|
505 |
+
|
506 |
+
|
507 |
+
class EVAVisionTransformer(nn.Module):
|
508 |
+
""" Vision Transformer with support for patch or hybrid CNN input stage
|
509 |
+
"""
|
510 |
+
def __init__(self, img_size=224, patch_size=16, in_chans=3, num_classes=1000, embed_dim=768, depth=12,
|
511 |
+
num_heads=12, mlp_ratio=4., qkv_bias=False, qk_scale=None, drop_rate=0., attn_drop_rate=0.,
|
512 |
+
drop_path_rate=0., norm_layer=nn.LayerNorm, init_values=None, patch_dropout=0.,
|
513 |
+
use_abs_pos_emb=True, use_rel_pos_bias=False, use_shared_rel_pos_bias=False, rope=False,
|
514 |
+
use_mean_pooling=True, init_scale=0.001, grad_checkpointing=False, xattn=False, postnorm=False,
|
515 |
+
pt_hw_seq_len=16, intp_freq=False, naiveswiglu=False, subln=False):
|
516 |
+
super().__init__()
|
517 |
+
self.image_size = img_size
|
518 |
+
self.num_classes = num_classes
|
519 |
+
self.num_features = self.embed_dim = embed_dim # num_features for consistency with other models
|
520 |
+
|
521 |
+
self.patch_embed = PatchEmbed(
|
522 |
+
img_size=img_size, patch_size=patch_size, in_chans=in_chans, embed_dim=embed_dim)
|
523 |
+
num_patches = self.patch_embed.num_patches
|
524 |
+
|
525 |
+
self.cls_token = nn.Parameter(torch.zeros(1, 1, embed_dim))
|
526 |
+
# self.mask_token = nn.Parameter(torch.zeros(1, 1, embed_dim))
|
527 |
+
if use_abs_pos_emb:
|
528 |
+
self.pos_embed = nn.Parameter(torch.zeros(1, num_patches + 1, embed_dim))
|
529 |
+
else:
|
530 |
+
self.pos_embed = None
|
531 |
+
self.pos_drop = nn.Dropout(p=drop_rate)
|
532 |
+
|
533 |
+
if use_shared_rel_pos_bias:
|
534 |
+
self.rel_pos_bias = RelativePositionBias(window_size=self.patch_embed.patch_shape, num_heads=num_heads)
|
535 |
+
else:
|
536 |
+
self.rel_pos_bias = None
|
537 |
+
|
538 |
+
if rope:
|
539 |
+
half_head_dim = embed_dim // num_heads // 2
|
540 |
+
hw_seq_len = img_size // patch_size
|
541 |
+
self.rope = VisionRotaryEmbeddingFast(
|
542 |
+
dim=half_head_dim,
|
543 |
+
pt_seq_len=pt_hw_seq_len,
|
544 |
+
ft_seq_len=hw_seq_len if intp_freq else None,
|
545 |
+
# patch_dropout=patch_dropout
|
546 |
+
)
|
547 |
+
else:
|
548 |
+
self.rope = None
|
549 |
+
|
550 |
+
self.naiveswiglu = naiveswiglu
|
551 |
+
|
552 |
+
dpr = [x.item() for x in torch.linspace(0, drop_path_rate, depth)] # stochastic depth decay rule
|
553 |
+
self.use_rel_pos_bias = use_rel_pos_bias
|
554 |
+
self.blocks = nn.ModuleList([
|
555 |
+
Block(
|
556 |
+
dim=embed_dim, num_heads=num_heads, mlp_ratio=mlp_ratio, qkv_bias=qkv_bias, qk_scale=qk_scale,
|
557 |
+
drop=drop_rate, attn_drop=attn_drop_rate, drop_path=dpr[i], norm_layer=norm_layer,
|
558 |
+
init_values=init_values, window_size=self.patch_embed.patch_shape if use_rel_pos_bias else None,
|
559 |
+
xattn=xattn, rope=self.rope, postnorm=postnorm, subln=subln, naiveswiglu=naiveswiglu)
|
560 |
+
for i in range(depth)])
|
561 |
+
self.norm = nn.Identity() if use_mean_pooling else norm_layer(embed_dim)
|
562 |
+
self.fc_norm = norm_layer(embed_dim) if use_mean_pooling else None
|
563 |
+
self.head = nn.Linear(embed_dim, num_classes) if num_classes > 0 else nn.Identity()
|
564 |
+
|
565 |
+
if self.pos_embed is not None:
|
566 |
+
trunc_normal_(self.pos_embed, std=.02)
|
567 |
+
|
568 |
+
trunc_normal_(self.cls_token, std=.02)
|
569 |
+
# trunc_normal_(self.mask_token, std=.02)
|
570 |
+
|
571 |
+
self.apply(self._init_weights)
|
572 |
+
self.fix_init_weight()
|
573 |
+
|
574 |
+
if isinstance(self.head, nn.Linear):
|
575 |
+
trunc_normal_(self.head.weight, std=.02)
|
576 |
+
self.head.weight.data.mul_(init_scale)
|
577 |
+
self.head.bias.data.mul_(init_scale)
|
578 |
+
|
579 |
+
# setting a patch_dropout of 0. would mean it is disabled and this function would be the identity fn
|
580 |
+
self.patch_dropout = PatchDropout(patch_dropout) if patch_dropout > 0. else nn.Identity()
|
581 |
+
|
582 |
+
self.grad_checkpointing = grad_checkpointing
|
583 |
+
|
584 |
+
def fix_init_weight(self):
|
585 |
+
def rescale(param, layer_id):
|
586 |
+
param.div_(math.sqrt(2.0 * layer_id))
|
587 |
+
|
588 |
+
for layer_id, layer in enumerate(self.blocks):
|
589 |
+
rescale(layer.attn.proj.weight.data, layer_id + 1)
|
590 |
+
if self.naiveswiglu:
|
591 |
+
rescale(layer.mlp.w3.weight.data, layer_id + 1)
|
592 |
+
else:
|
593 |
+
rescale(layer.mlp.fc2.weight.data, layer_id + 1)
|
594 |
+
|
595 |
+
def get_cast_dtype(self) -> torch.dtype:
|
596 |
+
return self.blocks[0].mlp.fc2.weight.dtype
|
597 |
+
|
598 |
+
def _init_weights(self, m):
|
599 |
+
if isinstance(m, nn.Linear):
|
600 |
+
trunc_normal_(m.weight, std=.02)
|
601 |
+
if m.bias is not None:
|
602 |
+
nn.init.constant_(m.bias, 0)
|
603 |
+
elif isinstance(m, nn.LayerNorm):
|
604 |
+
nn.init.constant_(m.bias, 0)
|
605 |
+
nn.init.constant_(m.weight, 1.0)
|
606 |
+
|
607 |
+
def get_num_layers(self):
|
608 |
+
return len(self.blocks)
|
609 |
+
|
610 |
+
def lock(self, unlocked_groups=0, freeze_bn_stats=False):
|
611 |
+
assert unlocked_groups == 0, 'partial locking not currently supported for this model'
|
612 |
+
for param in self.parameters():
|
613 |
+
param.requires_grad = False
|
614 |
+
|
615 |
+
@torch.jit.ignore
|
616 |
+
def set_grad_checkpointing(self, enable=True):
|
617 |
+
self.grad_checkpointing = enable
|
618 |
+
|
619 |
+
@torch.jit.ignore
|
620 |
+
def no_weight_decay(self):
|
621 |
+
return {'pos_embed', 'cls_token'}
|
622 |
+
|
623 |
+
def get_classifier(self):
|
624 |
+
return self.head
|
625 |
+
|
626 |
+
def reset_classifier(self, num_classes, global_pool=''):
|
627 |
+
self.num_classes = num_classes
|
628 |
+
self.head = nn.Linear(self.embed_dim, num_classes) if num_classes > 0 else nn.Identity()
|
629 |
+
|
630 |
+
def forward_features(self, x, return_all_features=False):
|
631 |
+
|
632 |
+
x = self.patch_embed(x)
|
633 |
+
batch_size, seq_len, _ = x.size()
|
634 |
+
|
635 |
+
cls_tokens = self.cls_token.expand(batch_size, -1, -1) # stole cls_tokens impl from Phil Wang, thanks
|
636 |
+
x = torch.cat((cls_tokens, x), dim=1)
|
637 |
+
if self.pos_embed is not None:
|
638 |
+
x = x + self.pos_embed
|
639 |
+
x = self.pos_drop(x)
|
640 |
+
|
641 |
+
# a patch_dropout of 0. would mean it is disabled and this function would do nothing but return what was passed in
|
642 |
+
if os.getenv('RoPE') == '1':
|
643 |
+
if self.training and not isinstance(self.patch_dropout, nn.Identity):
|
644 |
+
x, patch_indices_keep = self.patch_dropout(x)
|
645 |
+
self.rope.forward = partial(self.rope.forward, patch_indices_keep=patch_indices_keep)
|
646 |
+
else:
|
647 |
+
self.rope.forward = partial(self.rope.forward, patch_indices_keep=None)
|
648 |
+
x = self.patch_dropout(x)
|
649 |
+
else:
|
650 |
+
x = self.patch_dropout(x)
|
651 |
+
|
652 |
+
rel_pos_bias = self.rel_pos_bias() if self.rel_pos_bias is not None else None
|
653 |
+
for i, blk in enumerate(self.blocks):
|
654 |
+
if i == len(self.blocks)-1:
|
655 |
+
continue
|
656 |
+
if self.grad_checkpointing:
|
657 |
+
x = checkpoint(blk, x, (rel_pos_bias,))
|
658 |
+
else:
|
659 |
+
x = blk(x, rel_pos_bias=rel_pos_bias)
|
660 |
+
|
661 |
+
if not return_all_features:
|
662 |
+
x = self.norm(x)
|
663 |
+
if self.fc_norm is not None:
|
664 |
+
return self.fc_norm(x.mean(1))
|
665 |
+
else:
|
666 |
+
return x[:, 0]
|
667 |
+
return x
|
668 |
+
|
669 |
+
def forward(self, x, return_all_features=False):
|
670 |
+
if return_all_features:
|
671 |
+
return self.forward_features(x, return_all_features)
|
672 |
+
x = self.forward_features(x)
|
673 |
+
x = self.head(x)
|
674 |
+
return x
|
675 |
+
|
676 |
+
class LayerNorm(nn.LayerNorm):
|
677 |
+
"""Subclass torch's LayerNorm (with cast back to input dtype)."""
|
678 |
+
|
679 |
+
def forward(self, x: torch.Tensor):
|
680 |
+
orig_type = x.dtype
|
681 |
+
x = F.layer_norm(x, self.normalized_shape, self.weight, self.bias, self.eps)
|
682 |
+
return x.to(orig_type)
|
683 |
+
|
684 |
+
try:
|
685 |
+
from apex.normalization import FusedLayerNorm
|
686 |
+
except:
|
687 |
+
FusedLayerNorm = LayerNorm
|
688 |
+
print("Please 'pip install apex'")
|
689 |
+
|
690 |
+
|
691 |
+
@dataclass
|
692 |
+
class CLIPVisionCfg:
|
693 |
+
layers: Union[Tuple[int, int, int, int], int] = 12
|
694 |
+
width: int = 768
|
695 |
+
head_width: int = 64
|
696 |
+
mlp_ratio: float = 4.0
|
697 |
+
patch_size: int = 16
|
698 |
+
image_size: Union[Tuple[int, int], int] = 224
|
699 |
+
ls_init_value: Optional[float] = None # layer scale initial value
|
700 |
+
patch_dropout: float = 0. # what fraction of patches to dropout during training (0 would mean disabled and no patches dropped) - 0.5 to 0.75 recommended in the paper for optimal results
|
701 |
+
global_average_pool: bool = False # whether to global average pool the last embedding layer, instead of using CLS token (https://arxiv.org/abs/2205.01580)
|
702 |
+
drop_path_rate: Optional[float] = None # drop path rate
|
703 |
+
timm_model_name: str = None # a valid model name overrides layers, width, patch_size
|
704 |
+
timm_model_pretrained: bool = False # use (imagenet) pretrained weights for named model
|
705 |
+
timm_pool: str = 'avg' # feature pooling for timm model ('abs_attn', 'rot_attn', 'avg', '')
|
706 |
+
timm_proj: str = 'linear' # linear projection for timm model output ('linear', 'mlp', '')
|
707 |
+
timm_proj_bias: bool = False # enable bias final projection
|
708 |
+
eva_model_name: str = None # a valid eva model name overrides layers, width, patch_size
|
709 |
+
qkv_bias: bool = True
|
710 |
+
fusedLN: bool = False
|
711 |
+
xattn: bool = False
|
712 |
+
postnorm: bool = False
|
713 |
+
rope: bool = False
|
714 |
+
pt_hw_seq_len: int = 16 # 224/14
|
715 |
+
intp_freq: bool = False
|
716 |
+
naiveswiglu: bool = False
|
717 |
+
subln: bool = False
|
718 |
+
|
719 |
+
|
720 |
+
def _build_vision_tower(
|
721 |
+
embed_dim: int,
|
722 |
+
vision_cfg: CLIPVisionCfg
|
723 |
+
):
|
724 |
+
if isinstance(vision_cfg, dict):
|
725 |
+
vision_cfg = CLIPVisionCfg(**vision_cfg)
|
726 |
+
|
727 |
+
if vision_cfg.eva_model_name:
|
728 |
+
vision_heads = vision_cfg.width // vision_cfg.head_width
|
729 |
+
norm_layer = LayerNorm
|
730 |
+
visual = EVAVisionTransformer(
|
731 |
+
img_size=vision_cfg.image_size,
|
732 |
+
patch_size=vision_cfg.patch_size,
|
733 |
+
num_classes=embed_dim,
|
734 |
+
use_mean_pooling=vision_cfg.global_average_pool, #False
|
735 |
+
init_values=vision_cfg.ls_init_value,
|
736 |
+
patch_dropout=vision_cfg.patch_dropout,
|
737 |
+
embed_dim=vision_cfg.width,
|
738 |
+
depth=vision_cfg.layers,
|
739 |
+
num_heads=vision_heads,
|
740 |
+
mlp_ratio=vision_cfg.mlp_ratio,
|
741 |
+
qkv_bias=vision_cfg.qkv_bias,
|
742 |
+
drop_path_rate=vision_cfg.drop_path_rate,
|
743 |
+
norm_layer= partial(FusedLayerNorm, eps=1e-6) if vision_cfg.fusedLN else partial(norm_layer, eps=1e-6),
|
744 |
+
xattn=vision_cfg.xattn,
|
745 |
+
rope=vision_cfg.rope,
|
746 |
+
postnorm=vision_cfg.postnorm,
|
747 |
+
pt_hw_seq_len= vision_cfg.pt_hw_seq_len, # 224/14
|
748 |
+
intp_freq= vision_cfg.intp_freq,
|
749 |
+
naiveswiglu= vision_cfg.naiveswiglu,
|
750 |
+
subln= vision_cfg.subln
|
751 |
+
)
|
752 |
+
|
753 |
+
return visual
|
754 |
+
|
755 |
+
class Eva2LargeEncoder(nn.Module):
|
756 |
+
def __init__(self, image_size=224):
|
757 |
+
super(Eva2LargeEncoder, self).__init__()
|
758 |
+
self.config = {
|
759 |
+
"embed_dim": 768,
|
760 |
+
"vision_cfg": {
|
761 |
+
"image_size": 336,
|
762 |
+
"layers": 24,
|
763 |
+
"width": 1024,
|
764 |
+
"drop_path_rate": 0,
|
765 |
+
"head_width": 64,
|
766 |
+
"mlp_ratio": 2.6667,
|
767 |
+
"patch_size": 14,
|
768 |
+
"eva_model_name": "eva-clip-l-14-336",
|
769 |
+
"xattn": True,
|
770 |
+
"fusedLN": True,
|
771 |
+
"rope": True,
|
772 |
+
"pt_hw_seq_len": 16,
|
773 |
+
"intp_freq": True,
|
774 |
+
"naiveswiglu": True,
|
775 |
+
"subln": True
|
776 |
+
}
|
777 |
+
}
|
778 |
+
self.config['vision_cfg']['image_size'] = image_size
|
779 |
+
|
780 |
+
import os
|
781 |
+
os.environ['delRoPE'] = '1' # to avoid error in rope params when changing image size
|
782 |
+
self.model = _build_vision_tower(**self.config)
|
783 |
+
|
784 |
+
|
785 |
+
def forward(self, images):
|
786 |
+
encode = self.model(images, return_all_features=True)[:, 1:, :]
|
787 |
+
return encode
|
788 |
+
|
789 |
+
class CrossVisionModel(nn.Module):
|
790 |
+
def __init__(self, config):
|
791 |
+
super().__init__()
|
792 |
+
self.vit = Eva2LargeEncoder(image_size=config.cross_image_size)
|
793 |
+
self.pos_embed = nn.Parameter(torch.zeros((self.vit.config['vision_cfg']['image_size'] // self.vit.config['vision_cfg']['patch_size']) ** 2, self.vit.config['vision_cfg']['width']))
|
794 |
+
|
795 |
+
def forward(self, images):
|
796 |
+
enc = self.vit(images)
|
797 |
+
return enc + self.pos_embed.to(enc.device).unsqueeze(0)
|
generation_config.json
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_from_model_config": true,
|
3 |
+
"bos_token_id": 1,
|
4 |
+
"eos_token_id": 2,
|
5 |
+
"pad_token_id": 0,
|
6 |
+
"transformers_version": "4.41.0.dev0"
|
7 |
+
}
|
modeling_cogagent.py
ADDED
@@ -0,0 +1,974 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""largely copy from llama and adapt for CogAgent"""
|
2 |
+
import warnings
|
3 |
+
from typing import TYPE_CHECKING, Optional, Tuple, List, Union, Literal, Dict, Any
|
4 |
+
|
5 |
+
import math
|
6 |
+
import torch
|
7 |
+
from torch import nn
|
8 |
+
from torch.nn import CrossEntropyLoss
|
9 |
+
from torchvision import transforms
|
10 |
+
from einops import rearrange
|
11 |
+
|
12 |
+
from transformers import PreTrainedModel, PreTrainedTokenizer
|
13 |
+
from transformers.utils.logging import get_logger
|
14 |
+
from transformers.activations import ACT2FN
|
15 |
+
from transformers.modeling_outputs import BaseModelOutputWithPast, CausalLMOutputWithPast
|
16 |
+
|
17 |
+
from .configuration_cogagent import CogAgentConfig
|
18 |
+
# from .util import FastRotaryEmbedding
|
19 |
+
from torch.nn import functional as F
|
20 |
+
from .visual import EVA2CLIPModel
|
21 |
+
from .cross_visual import CrossVisionModel
|
22 |
+
|
23 |
+
if TYPE_CHECKING:
|
24 |
+
from transformers.utils import ModelOutput
|
25 |
+
|
26 |
+
logger = get_logger(__name__)
|
27 |
+
|
28 |
+
LANGUAGE_TOKEN_TYPE = 0
|
29 |
+
VISION_TOKEN_TYPE = 1
|
30 |
+
|
31 |
+
|
32 |
+
# Copied from transformers.models.bart.modeling_bart._make_causal_mask
|
33 |
+
def _make_causal_mask(
|
34 |
+
input_ids_shape: torch.Size, dtype: torch.dtype, device: torch.device, past_key_values_length: int = 0
|
35 |
+
):
|
36 |
+
"""
|
37 |
+
Make causal mask used for bi-directional self-attention.
|
38 |
+
"""
|
39 |
+
bsz, tgt_len = input_ids_shape
|
40 |
+
mask = torch.full((tgt_len, tgt_len), torch.finfo(dtype).min, device=device)
|
41 |
+
mask_cond = torch.arange(mask.size(-1), device=device)
|
42 |
+
mask.masked_fill_(mask_cond < (mask_cond + 1).view(mask.size(-1), 1), 0)
|
43 |
+
mask = mask.to(dtype)
|
44 |
+
|
45 |
+
if past_key_values_length > 0:
|
46 |
+
mask = torch.cat([torch.zeros(tgt_len, past_key_values_length, dtype=dtype, device=device), mask], dim=-1)
|
47 |
+
return mask[None, None, :, :].expand(bsz, 1, tgt_len, tgt_len + past_key_values_length)
|
48 |
+
|
49 |
+
|
50 |
+
# Copied from transformers.models.bart.modeling_bart._expand_mask
|
51 |
+
def _expand_mask(mask: torch.Tensor, dtype: torch.dtype, tgt_len: Optional[int] = None):
|
52 |
+
"""
|
53 |
+
Expands attention_mask from `[bsz, seq_len]` to `[bsz, 1, tgt_seq_len, src_seq_len]`.
|
54 |
+
"""
|
55 |
+
bsz, src_len = mask.size()
|
56 |
+
tgt_len = tgt_len if tgt_len is not None else src_len
|
57 |
+
|
58 |
+
expanded_mask = mask[:, None, None, :].expand(bsz, 1, tgt_len, src_len).to(dtype)
|
59 |
+
|
60 |
+
inverted_mask = 1.0 - expanded_mask
|
61 |
+
|
62 |
+
return inverted_mask.masked_fill(inverted_mask.to(torch.bool), torch.finfo(dtype).min)
|
63 |
+
|
64 |
+
|
65 |
+
class RMSNorm(nn.Module):
|
66 |
+
def __init__(self, hidden_size, eps=1e-6):
|
67 |
+
super().__init__()
|
68 |
+
self.weight = nn.Parameter(torch.ones(hidden_size))
|
69 |
+
self.variance_epsilon = eps
|
70 |
+
|
71 |
+
def forward(self, hidden_states):
|
72 |
+
input_dtype = hidden_states.dtype
|
73 |
+
hidden_states = hidden_states.to(torch.float32)
|
74 |
+
variance = hidden_states.pow(2).mean(-1, keepdim=True)
|
75 |
+
hidden_states = hidden_states * torch.rsqrt(variance + self.variance_epsilon)
|
76 |
+
return (self.weight * hidden_states).to(input_dtype)
|
77 |
+
|
78 |
+
|
79 |
+
class MLP(nn.Module):
|
80 |
+
def __init__(self, config):
|
81 |
+
super().__init__()
|
82 |
+
self.hidden_size = config.hidden_size
|
83 |
+
self.intermediate_size = config.intermediate_size
|
84 |
+
self.gate_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=False)
|
85 |
+
self.up_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=False)
|
86 |
+
self.down_proj = nn.Linear(self.intermediate_size, self.hidden_size, bias=False)
|
87 |
+
self.act_fn = ACT2FN[config.hidden_act]
|
88 |
+
|
89 |
+
def forward(self, x):
|
90 |
+
down_proj = self.down_proj(self.act_fn(self.gate_proj(x)) * self.up_proj(x))
|
91 |
+
return down_proj
|
92 |
+
|
93 |
+
|
94 |
+
def get_expert_mask(token_type_ids: "torch.LongTensor(B, L)") -> "[torch.BoolTensor(B, L), torch.BoolTensor(B, L)]":
|
95 |
+
vision_token_mask = torch.zeros_like(token_type_ids, dtype=torch.bool)
|
96 |
+
vision_token_mask[:, :-1] = (token_type_ids[:, :-1] == VISION_TOKEN_TYPE) & (token_type_ids[:, 1:] == VISION_TOKEN_TYPE)
|
97 |
+
language_token_mask = ~vision_token_mask
|
98 |
+
return vision_token_mask, language_token_mask
|
99 |
+
|
100 |
+
|
101 |
+
class VisionExpertMLP(nn.Module):
|
102 |
+
def __init__(self, config):
|
103 |
+
super().__init__()
|
104 |
+
self.language_mlp = MLP(config)
|
105 |
+
self.vision_mlp = MLP(config)
|
106 |
+
|
107 |
+
def forward(self, hidden_states: "torch.Tensor(B, L, D)", token_type_ids: "torch.LongTensor(B, L)"):
|
108 |
+
output = torch.empty(hidden_states.shape, dtype=hidden_states.dtype, device=hidden_states.device)
|
109 |
+
vision_token_mask, language_token_mask = get_expert_mask(token_type_ids)
|
110 |
+
output[vision_token_mask] = self.vision_mlp(hidden_states[vision_token_mask])
|
111 |
+
output[language_token_mask] = self.language_mlp(hidden_states[language_token_mask])
|
112 |
+
return output
|
113 |
+
|
114 |
+
|
115 |
+
def attention_fn(
|
116 |
+
query_layer: "torch.tensor(B, H, L, HD)",
|
117 |
+
key_layer: "torch.tensor(B, H, L, HD)",
|
118 |
+
value_layer: "torch.tensor(B, H, L, HD)",
|
119 |
+
attention_mask: "torch.tensor(B, H, L, HD)",
|
120 |
+
*,
|
121 |
+
scaling_attention_score: bool = True,
|
122 |
+
attention_dropout: nn.Module = None
|
123 |
+
):
|
124 |
+
attention_mask_bool = (attention_mask == 0)
|
125 |
+
is_low_triangle = (attention_mask_bool == torch.ones_like(attention_mask_bool, dtype=torch.float).tril()).all()
|
126 |
+
is_full = (attention_mask_bool > 0).all()
|
127 |
+
if not (int(torch.__version__.split('.')[0]) >= 2):
|
128 |
+
warnings.warn("It's recommended to use torch2.0 or higher.")
|
129 |
+
if int(torch.__version__.split('.')[0]) >= 2 and scaling_attention_score and (is_full or is_low_triangle):
|
130 |
+
dropout_p = 0. if attention_dropout is None or not attention_dropout.training else attention_dropout.p
|
131 |
+
return torch.nn.functional.scaled_dot_product_attention(
|
132 |
+
query_layer, key_layer, value_layer,
|
133 |
+
attn_mask=None,
|
134 |
+
dropout_p=dropout_p,
|
135 |
+
is_causal=not is_full
|
136 |
+
)
|
137 |
+
else:
|
138 |
+
if scaling_attention_score:
|
139 |
+
query_layer = query_layer / math.sqrt(query_layer.shape[-1])
|
140 |
+
attention_scores = torch.matmul(query_layer, key_layer.transpose(-1, -2))
|
141 |
+
attention_scores = attention_scores + attention_mask
|
142 |
+
attention_scores = nn.functional.softmax(attention_scores, dim=-1, dtype=torch.float32).to(query_layer.dtype)
|
143 |
+
if attention_dropout is not None:
|
144 |
+
attention_scores = attention_dropout(attention_scores)
|
145 |
+
context_layer = torch.matmul(attention_scores, value_layer)
|
146 |
+
return context_layer
|
147 |
+
|
148 |
+
class RotaryEmbedding(torch.nn.Module):
|
149 |
+
def __init__(self, dim, max_position_embeddings=2048, base=10000, device=None):
|
150 |
+
super().__init__()
|
151 |
+
|
152 |
+
self.dim = dim
|
153 |
+
self.max_position_embeddings = max_position_embeddings
|
154 |
+
self.base = base
|
155 |
+
inv_freq = self._compute_inv_freq(device)
|
156 |
+
self.register_buffer("inv_freq", inv_freq)
|
157 |
+
self.max_seq_len_cached = 0
|
158 |
+
|
159 |
+
def _compute_inv_freq(self, device=None):
|
160 |
+
return 1.0 / (
|
161 |
+
self.base
|
162 |
+
** (torch.arange(0, self.dim, 2, device=device) / self.dim)
|
163 |
+
)
|
164 |
+
|
165 |
+
def _set_cos_sin_cache(self, seq_len, device, dtype):
|
166 |
+
self.max_seq_len_cached = seq_len
|
167 |
+
t = torch.arange(self.max_seq_len_cached, device=device, dtype=self.inv_freq.dtype)
|
168 |
+
|
169 |
+
freqs = torch.einsum("i,j->ij", t, self.inv_freq)
|
170 |
+
# Different from paper, but it uses a different permutation in order to obtain the same calculation
|
171 |
+
emb = torch.cat((freqs, freqs), dim=-1)
|
172 |
+
self.register_buffer("cos_cached", emb.cos()[:, None, :].to(dtype), persistent=False)
|
173 |
+
self.register_buffer("sin_cached", emb.sin()[:, None, :].to(dtype), persistent=False)
|
174 |
+
|
175 |
+
def forward(self, x, seq_len):
|
176 |
+
# x: [bs, num_attention_heads, seq_len, head_size]
|
177 |
+
if seq_len > self.max_seq_len_cached:
|
178 |
+
self._set_cos_sin_cache(seq_len=seq_len, device=x.device, dtype=x.dtype)
|
179 |
+
|
180 |
+
return (
|
181 |
+
self.cos_cached[:seq_len, ...].to(dtype=x.dtype),
|
182 |
+
self.sin_cached[:seq_len, ...].to(dtype=x.dtype),
|
183 |
+
)
|
184 |
+
|
185 |
+
|
186 |
+
def rotate_half(x):
|
187 |
+
x1, x2 = x[..., :x.shape[-1] // 2], x[..., x.shape[-1] // 2:]
|
188 |
+
return torch.cat((-x2, x1), dim=x1.ndim - 1)
|
189 |
+
|
190 |
+
|
191 |
+
def apply_rotary_pos_emb_index_bhs(q, k, cos, sin, position_id):
|
192 |
+
# batch_size, num_head, seq_len, hidden_size
|
193 |
+
cos, sin = F.embedding(position_id, cos.squeeze(1)).unsqueeze(1), \
|
194 |
+
F.embedding(position_id, sin.squeeze(1)).unsqueeze(1)
|
195 |
+
q, k = (q * cos) + (rotate_half(q) * sin), (k * cos) + (rotate_half(k) * sin)
|
196 |
+
return q, k
|
197 |
+
|
198 |
+
class VisionExpertAttention(nn.Module):
|
199 |
+
def __init__(self, config):
|
200 |
+
super().__init__()
|
201 |
+
self.config = config
|
202 |
+
self.hidden_size = config.hidden_size
|
203 |
+
self.num_heads = config.num_attention_heads
|
204 |
+
self.head_dim = self.hidden_size // self.num_heads
|
205 |
+
self.max_position_embeddings = config.max_position_embeddings
|
206 |
+
|
207 |
+
self.rotary_emb = RotaryEmbedding(self.head_dim)
|
208 |
+
self.vision_expert_query_key_value = nn.Linear(self.hidden_size, self.hidden_size * 3, bias=False)
|
209 |
+
self.vision_expert_dense = nn.Linear(self.hidden_size, self.hidden_size, bias=False)
|
210 |
+
self.language_expert_query_key_value = nn.Linear(self.hidden_size, self.hidden_size * 3, bias=False)
|
211 |
+
self.language_expert_dense = nn.Linear(self.hidden_size, self.hidden_size, bias=False)
|
212 |
+
|
213 |
+
def _transpose_for_scores(self, tensor):
|
214 |
+
"""Transpose a 3D tensor [B, L, H*HD] into a 4D tensor with size [B H L HD]."""
|
215 |
+
new_tensor_shape = tensor.size()[:-1] + (self.num_heads, self.head_dim)
|
216 |
+
tensor = tensor.view(*new_tensor_shape)
|
217 |
+
return tensor.permute(0, 2, 1, 3)
|
218 |
+
|
219 |
+
def forward(
|
220 |
+
self,
|
221 |
+
hidden_states: torch.Tensor,
|
222 |
+
token_type_ids: torch.LongTensor,
|
223 |
+
position_ids: torch.LongTensor,
|
224 |
+
attention_mask: Optional[torch.Tensor] = None,
|
225 |
+
past_key_value: Optional[Tuple[torch.Tensor]] = None,
|
226 |
+
output_attentions: bool = False,
|
227 |
+
use_cache: bool = False,
|
228 |
+
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
|
229 |
+
bsz, q_len, _ = hidden_states.size()
|
230 |
+
vision_token_mask, language_token_mask = get_expert_mask(token_type_ids)
|
231 |
+
|
232 |
+
shape = list(hidden_states.shape)
|
233 |
+
shape[-1] = shape[-1] * 3
|
234 |
+
mixed_raw_layer = torch.empty(shape, dtype=hidden_states.dtype, device=hidden_states.device)
|
235 |
+
mixed_raw_layer[vision_token_mask] = self.vision_expert_query_key_value(hidden_states[vision_token_mask])
|
236 |
+
mixed_raw_layer[language_token_mask] = self.language_expert_query_key_value(hidden_states[language_token_mask])
|
237 |
+
|
238 |
+
query_states, key_states, value_states = torch.split(mixed_raw_layer, self.hidden_size, dim=-1)
|
239 |
+
query_states = self._transpose_for_scores(query_states) # B, H, L, HD
|
240 |
+
key_states = self._transpose_for_scores(key_states) # B, H, L, HD
|
241 |
+
value_states = self._transpose_for_scores(value_states) # B, H, L, HD
|
242 |
+
|
243 |
+
kv_seq_len = key_states.shape[-2]
|
244 |
+
if past_key_value is not None:
|
245 |
+
kv_seq_len += past_key_value[0].shape[-2]
|
246 |
+
|
247 |
+
cos, sin = self.rotary_emb(value_states, seq_len=position_ids.max() + 1)
|
248 |
+
query_states, key_states = apply_rotary_pos_emb_index_bhs(query_states, key_states, cos, sin, position_ids)
|
249 |
+
|
250 |
+
if past_key_value is not None:
|
251 |
+
key_states = torch.cat([past_key_value[0], key_states], dim=2)
|
252 |
+
value_states = torch.cat([past_key_value[1], value_states], dim=2)
|
253 |
+
|
254 |
+
past_key_value = (key_states, value_states) if use_cache else None
|
255 |
+
|
256 |
+
context_layer = attention_fn(
|
257 |
+
query_layer=query_states, key_layer=key_states, value_layer=value_states, attention_mask=attention_mask,
|
258 |
+
scaling_attention_score=True, attention_dropout=None)
|
259 |
+
if context_layer.size() != (bsz, self.num_heads, q_len, self.head_dim):
|
260 |
+
raise ValueError(
|
261 |
+
f"`attn_output` should be of size {(bsz, self.num_heads, q_len, self.head_dim)}, but is"
|
262 |
+
f" {context_layer.size()}"
|
263 |
+
)
|
264 |
+
context_layer = context_layer.transpose(1, 2).contiguous().reshape(bsz, q_len, self.hidden_size)
|
265 |
+
|
266 |
+
attn_output = torch.empty(context_layer.shape, dtype=hidden_states.dtype, device=hidden_states.device)
|
267 |
+
attn_output[vision_token_mask] = self.vision_expert_dense(context_layer[vision_token_mask])
|
268 |
+
attn_output[language_token_mask] = self.language_expert_dense(context_layer[language_token_mask])
|
269 |
+
|
270 |
+
if output_attentions:
|
271 |
+
warnings.warn("output_attentions is not implemented.")
|
272 |
+
|
273 |
+
return attn_output, None, past_key_value
|
274 |
+
|
275 |
+
class CrossAttention(nn.Module):
|
276 |
+
def __init__(self, config):
|
277 |
+
super().__init__()
|
278 |
+
self.config = config
|
279 |
+
self.hidden_size = config.hidden_size
|
280 |
+
self.cross_hidden_size = config.cross_hidden_size
|
281 |
+
self.cross_compute_hidden_size = config.cross_compute_hidden_size
|
282 |
+
self.num_heads = config.num_attention_heads
|
283 |
+
self.head_dim = self.hidden_size // self.num_heads
|
284 |
+
self.cross_head_dim = self.cross_compute_hidden_size // self.num_heads
|
285 |
+
self.max_position_embeddings = config.max_position_embeddings
|
286 |
+
|
287 |
+
self.query = nn.Linear(self.hidden_size, self.cross_compute_hidden_size, bias=False)
|
288 |
+
self.key_value = nn.Linear(self.cross_hidden_size, self.cross_compute_hidden_size * 2, bias=False)
|
289 |
+
self.dense = nn.Linear(self.cross_compute_hidden_size, self.hidden_size, bias=False)
|
290 |
+
|
291 |
+
def _transpose_for_scores(self, tensor):
|
292 |
+
"""Transpose a 3D tensor [B, L, H*HD] into a 4D tensor with size [B H L HD]."""
|
293 |
+
new_tensor_shape = tensor.size()[:-1] + (self.num_heads, self.cross_head_dim)
|
294 |
+
tensor = tensor.view(*new_tensor_shape)
|
295 |
+
return tensor.permute(0, 2, 1, 3)
|
296 |
+
|
297 |
+
def forward(
|
298 |
+
self,
|
299 |
+
hidden_states: torch.Tensor,
|
300 |
+
encoder_outputs: torch.LongTensor,
|
301 |
+
attention_mask: Optional[torch.Tensor] = None,
|
302 |
+
past_key_value: Optional[Tuple[torch.Tensor]] = None,
|
303 |
+
output_attentions: bool = False,
|
304 |
+
use_cache: bool = False,
|
305 |
+
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
|
306 |
+
bsz, q_len, _ = hidden_states.size()
|
307 |
+
|
308 |
+
shape = list(hidden_states.shape)
|
309 |
+
shape[-1] = shape[-1] * 3
|
310 |
+
|
311 |
+
mixed_query_layer = self.query(hidden_states)
|
312 |
+
if past_key_value is None:
|
313 |
+
mixed_x_layer = self.key_value(encoder_outputs)
|
314 |
+
mixed_key_layer, mixed_value_layer = torch.split(mixed_x_layer, self.cross_compute_hidden_size, dim=-1)
|
315 |
+
key_states = self._transpose_for_scores(mixed_key_layer) # B, H, L, HD
|
316 |
+
value_states = self._transpose_for_scores(mixed_value_layer) # B, H, L, HD
|
317 |
+
else:
|
318 |
+
key_states, value_states = past_key_value
|
319 |
+
|
320 |
+
query_states = self._transpose_for_scores(mixed_query_layer) # B, H, L, HD
|
321 |
+
|
322 |
+
past_key_value = (key_states, value_states) if use_cache else None
|
323 |
+
|
324 |
+
context_layer = attention_fn(
|
325 |
+
query_layer=query_states, key_layer=key_states, value_layer=value_states, attention_mask=attention_mask,
|
326 |
+
scaling_attention_score=True, attention_dropout=None)
|
327 |
+
if context_layer.size() != (bsz, self.num_heads, q_len, self.cross_head_dim):
|
328 |
+
raise ValueError(
|
329 |
+
f"`cross_attn_output` should be of size {(bsz, self.num_heads, q_len, self.cross_head_dim)}, but is"
|
330 |
+
f" {context_layer.size()}"
|
331 |
+
)
|
332 |
+
context_layer = context_layer.transpose(1, 2).contiguous().reshape(bsz, q_len, self.cross_hidden_size)
|
333 |
+
|
334 |
+
attn_output = self.dense(context_layer)
|
335 |
+
|
336 |
+
if output_attentions:
|
337 |
+
warnings.warn("output_attentions is not implemented.")
|
338 |
+
|
339 |
+
return attn_output, None, past_key_value
|
340 |
+
|
341 |
+
class CogAgentDecoderLayer(nn.Module):
|
342 |
+
def __init__(self, config):
|
343 |
+
super().__init__()
|
344 |
+
self.hidden_size = config.hidden_size
|
345 |
+
self.self_attn = VisionExpertAttention(config=config)
|
346 |
+
self.cross_attn = CrossAttention(config=config)
|
347 |
+
self.mlp = VisionExpertMLP(config)
|
348 |
+
self.input_layernorm = RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
|
349 |
+
self.post_attention_layernorm = RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
|
350 |
+
self.post_cross_attention_layernorm = RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
|
351 |
+
|
352 |
+
def forward(
|
353 |
+
self,
|
354 |
+
hidden_states: torch.Tensor,
|
355 |
+
encoder_outputs: torch.Tensor,
|
356 |
+
token_type_ids: torch.LongTensor,
|
357 |
+
position_ids: torch.LongTensor,
|
358 |
+
attention_mask: Optional[torch.Tensor] = None,
|
359 |
+
cross_attention_mask: Optional[torch.Tensor] = None,
|
360 |
+
past_key_value: Optional[Tuple[torch.Tensor]] = None,
|
361 |
+
output_attentions: Optional[bool] = False,
|
362 |
+
use_cache: Optional[bool] = False,
|
363 |
+
) -> Tuple[torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]]]:
|
364 |
+
residual = hidden_states
|
365 |
+
|
366 |
+
hidden_states = self.input_layernorm(hidden_states)
|
367 |
+
|
368 |
+
# Self Attention
|
369 |
+
hidden_states, self_attn_weights, present_key_value = self.self_attn(
|
370 |
+
hidden_states=hidden_states,
|
371 |
+
token_type_ids=token_type_ids,
|
372 |
+
position_ids=position_ids,
|
373 |
+
attention_mask=attention_mask,
|
374 |
+
past_key_value=past_key_value[:2] if past_key_value is not None else None,
|
375 |
+
output_attentions=output_attentions,
|
376 |
+
use_cache=use_cache,
|
377 |
+
)
|
378 |
+
hidden_states = residual + hidden_states
|
379 |
+
|
380 |
+
cross_input = self.post_cross_attention_layernorm(hidden_states)
|
381 |
+
# Fully Connected
|
382 |
+
attention_output, self_cross_attn_weights, present_cross_key_value = self.cross_attn(
|
383 |
+
hidden_states=cross_input,
|
384 |
+
encoder_outputs=encoder_outputs,
|
385 |
+
attention_mask=cross_attention_mask,
|
386 |
+
past_key_value=past_key_value[-2:] if past_key_value is not None else None,
|
387 |
+
output_attentions=output_attentions,
|
388 |
+
use_cache=use_cache,
|
389 |
+
)
|
390 |
+
hidden_states = hidden_states + attention_output
|
391 |
+
mlp_input = self.post_attention_layernorm(hidden_states)
|
392 |
+
mlp_output = self.mlp(mlp_input, token_type_ids=token_type_ids)
|
393 |
+
hidden_states = mlp_output + hidden_states
|
394 |
+
|
395 |
+
outputs = (hidden_states,)
|
396 |
+
|
397 |
+
if output_attentions:
|
398 |
+
outputs += (self_attn_weights,)
|
399 |
+
|
400 |
+
if use_cache:
|
401 |
+
outputs += (present_key_value+present_cross_key_value,)
|
402 |
+
|
403 |
+
return outputs # type: ignore
|
404 |
+
|
405 |
+
|
406 |
+
class CogAgentPreTrainedModel(PreTrainedModel):
|
407 |
+
config_class = CogAgentConfig
|
408 |
+
base_model_prefix = "model"
|
409 |
+
supports_gradient_checkpointing = False
|
410 |
+
_no_split_modules = ["CogAgentDecoderLayer", 'TransformerLayer', 'Block']
|
411 |
+
_skip_keys_device_placement = "past_key_values"
|
412 |
+
|
413 |
+
def _init_weights(self, module):
|
414 |
+
std = self.config.initializer_range
|
415 |
+
if isinstance(module, nn.Linear):
|
416 |
+
module.weight.data.normal_(mean=0.0, std=std)
|
417 |
+
if module.bias is not None:
|
418 |
+
module.bias.data.zero_()
|
419 |
+
elif isinstance(module, nn.Embedding):
|
420 |
+
module.weight.data.normal_(mean=0.0, std=std)
|
421 |
+
if module.padding_idx is not None:
|
422 |
+
module.weight.data[module.padding_idx].zero_()
|
423 |
+
|
424 |
+
|
425 |
+
def is_empty(images_list: Optional[List[List[torch.Tensor]]]):
|
426 |
+
if images_list is None or len(images_list) == 0:
|
427 |
+
return True
|
428 |
+
for image_list in images_list:
|
429 |
+
if len(image_list):
|
430 |
+
return False
|
431 |
+
return True
|
432 |
+
|
433 |
+
|
434 |
+
def build_position_ids(x: "torch.BoolTensor(B, L)", attention_mask: Optional["torch.BoolTensor(B, L)"] = None) -> "torch.LongTensor(B, L)":
|
435 |
+
if attention_mask is not None:
|
436 |
+
tmp = x.clone()
|
437 |
+
tmp[~(attention_mask.bool())] = -1
|
438 |
+
else:
|
439 |
+
tmp = x.clone()
|
440 |
+
# image boi eoi token as LANGUAGE_TOKEN_TYPE
|
441 |
+
is_boi_eoi = torch.zeros_like(x, dtype=torch.bool)
|
442 |
+
is_boi_eoi[:, 1:] |= (tmp[:, 1:] == VISION_TOKEN_TYPE) & (tmp[:, :-1] == LANGUAGE_TOKEN_TYPE)
|
443 |
+
is_boi_eoi[:, 0] |= (tmp[:, 0] == VISION_TOKEN_TYPE)
|
444 |
+
is_boi_eoi[:, :-1] |= (tmp[:, :-1] == VISION_TOKEN_TYPE) & (tmp[:, 1:] == LANGUAGE_TOKEN_TYPE)
|
445 |
+
is_boi_eoi[:, -1] |= (tmp[:, -1] == VISION_TOKEN_TYPE)
|
446 |
+
tmp[is_boi_eoi] = LANGUAGE_TOKEN_TYPE
|
447 |
+
# final position ids
|
448 |
+
y = torch.zeros_like(x, dtype=torch.long)
|
449 |
+
y[:, 1:] = (tmp[:, 1:] == LANGUAGE_TOKEN_TYPE) | ((tmp[:, 1:] == VISION_TOKEN_TYPE) & (tmp[:, :-1] == LANGUAGE_TOKEN_TYPE))
|
450 |
+
y = y.cumsum(dim=-1)
|
451 |
+
return y
|
452 |
+
|
453 |
+
|
454 |
+
class CogAgentModel(CogAgentPreTrainedModel):
|
455 |
+
def __init__(self, config):
|
456 |
+
super().__init__(config)
|
457 |
+
self.padding_idx = config.pad_token_id
|
458 |
+
self.vocab_size = config.vocab_size
|
459 |
+
|
460 |
+
self.embed_tokens = nn.Embedding(config.vocab_size, config.hidden_size, self.padding_idx)
|
461 |
+
self.layers = nn.ModuleList([CogAgentDecoderLayer(config) for _ in range(config.num_hidden_layers)])
|
462 |
+
self.norm = RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
|
463 |
+
|
464 |
+
self.vision = EVA2CLIPModel(config)
|
465 |
+
self.cross_vision = CrossVisionModel(config)
|
466 |
+
|
467 |
+
self.gradient_checkpointing = False
|
468 |
+
# Initialize weights and apply final processing
|
469 |
+
self.post_init()
|
470 |
+
|
471 |
+
def encode_images(self, images: List[List[torch.Tensor]]) -> torch.Tensor:
|
472 |
+
images_list, images = images, []
|
473 |
+
|
474 |
+
images = []
|
475 |
+
for image_list in images_list:
|
476 |
+
for image in image_list:
|
477 |
+
images.append(image)
|
478 |
+
|
479 |
+
images = torch.stack(images)
|
480 |
+
images_features = self.vision(images)
|
481 |
+
return images_features
|
482 |
+
|
483 |
+
def encode_cross_images(self, images: List[List[torch.Tensor]]) -> torch.Tensor:
|
484 |
+
images_list, images = images, []
|
485 |
+
|
486 |
+
images = []
|
487 |
+
for image_list in images_list:
|
488 |
+
for image in image_list:
|
489 |
+
images.append(image)
|
490 |
+
|
491 |
+
images = torch.stack(images)
|
492 |
+
encoder_outputs = self.cross_vision(images)
|
493 |
+
return encoder_outputs
|
494 |
+
|
495 |
+
def forward(
|
496 |
+
self,
|
497 |
+
input_ids: torch.LongTensor = None,
|
498 |
+
images: List[List[torch.Tensor]] = None,
|
499 |
+
cross_images: List[List[torch.Tensor]] = None,
|
500 |
+
token_type_ids: Optional[torch.LongTensor] = None,
|
501 |
+
attention_mask: Optional[torch.Tensor] = None,
|
502 |
+
cross_attention_mask: Optional[torch.Tensor] = None,
|
503 |
+
position_ids: Optional[torch.LongTensor] = None,
|
504 |
+
past_key_values: Optional[List[torch.FloatTensor]] = None,
|
505 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
506 |
+
use_cache: Optional[bool] = None,
|
507 |
+
output_attentions: Optional[bool] = None,
|
508 |
+
output_hidden_states: Optional[bool] = None,
|
509 |
+
return_dict: Optional[bool] = None,
|
510 |
+
) -> Union[Tuple, BaseModelOutputWithPast]:
|
511 |
+
"""take care of image_encode, token_type_ids, position_ids and (attention_mask = None is fine)"""
|
512 |
+
|
513 |
+
if past_key_values is not None:
|
514 |
+
encoder_outputs = None
|
515 |
+
# generate mode with past_key_values. the image features are already mapped
|
516 |
+
else:
|
517 |
+
# not allow for inputs_embeds, because we want to process image feature
|
518 |
+
assert input_ids is not None and inputs_embeds is None, f"{input_ids} {inputs_embeds}"
|
519 |
+
if not is_empty(images): # multi-modality
|
520 |
+
assert token_type_ids is not None, f"multi-modality requires `token_type_ids`!"
|
521 |
+
assert len(input_ids) == len(images), f"{len(input_ids)} {len(images)}"
|
522 |
+
inputs_embeds = self.embed_tokens(input_ids)
|
523 |
+
images_features = self.encode_images(images)
|
524 |
+
encoder_outputs = self.encode_cross_images(cross_images)
|
525 |
+
images_features = rearrange(images_features, 'b n d -> (b n) d')
|
526 |
+
images_features = images_features.to(dtype=inputs_embeds.dtype, device=inputs_embeds.device)
|
527 |
+
inputs_embeds = inputs_embeds.index_put([token_type_ids == VISION_TOKEN_TYPE], images_features)
|
528 |
+
else: # single-modality
|
529 |
+
if token_type_ids is None:
|
530 |
+
token_type_ids = torch.ones_like(input_ids, dtype=torch.long, device=input_ids.device) * LANGUAGE_TOKEN_TYPE
|
531 |
+
assert not (token_type_ids == VISION_TOKEN_TYPE).any(), f"{(token_type_ids == VISION_TOKEN_TYPE).sum()}"
|
532 |
+
inputs_embeds = self.embed_tokens(input_ids)
|
533 |
+
encoder_outputs = None
|
534 |
+
|
535 |
+
if position_ids is None:
|
536 |
+
position_ids = build_position_ids(token_type_ids, attention_mask)
|
537 |
+
input_ids = None
|
538 |
+
|
539 |
+
return self.llm_forward(
|
540 |
+
input_ids=input_ids,
|
541 |
+
encoder_outputs=encoder_outputs,
|
542 |
+
token_type_ids=token_type_ids,
|
543 |
+
attention_mask=attention_mask,
|
544 |
+
cross_attention_mask=cross_attention_mask,
|
545 |
+
position_ids=position_ids,
|
546 |
+
past_key_values=past_key_values,
|
547 |
+
inputs_embeds=inputs_embeds,
|
548 |
+
use_cache=use_cache,
|
549 |
+
output_attentions=output_attentions,
|
550 |
+
output_hidden_states=output_hidden_states,
|
551 |
+
return_dict=return_dict,
|
552 |
+
)
|
553 |
+
|
554 |
+
def llm_forward(
|
555 |
+
self,
|
556 |
+
input_ids: torch.LongTensor = None,
|
557 |
+
encoder_outputs: torch.LongTensor = None,
|
558 |
+
token_type_ids: torch.LongTensor = None,
|
559 |
+
attention_mask: Optional[torch.Tensor] = None,
|
560 |
+
cross_attention_mask: Optional[torch.Tensor] = None,
|
561 |
+
position_ids: Optional[torch.LongTensor] = None,
|
562 |
+
past_key_values: Optional[List[torch.FloatTensor]] = None,
|
563 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
564 |
+
use_cache: Optional[bool] = None,
|
565 |
+
output_attentions: Optional[bool] = None,
|
566 |
+
output_hidden_states: Optional[bool] = None,
|
567 |
+
return_dict: Optional[bool] = None,
|
568 |
+
) -> Union[Tuple, BaseModelOutputWithPast]:
|
569 |
+
"""largely copy from llama forward and adapt for CogAgent with `token_type_ids`"""
|
570 |
+
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
571 |
+
output_hidden_states = (
|
572 |
+
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
573 |
+
)
|
574 |
+
use_cache = use_cache if use_cache is not None else self.config.use_cache
|
575 |
+
|
576 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
577 |
+
|
578 |
+
# retrieve input_ids and inputs_embeds
|
579 |
+
if input_ids is not None and inputs_embeds is not None:
|
580 |
+
raise ValueError("You cannot specify both decoder_input_ids and decoder_inputs_embeds at the same time")
|
581 |
+
elif input_ids is not None:
|
582 |
+
batch_size, seq_length = input_ids.shape
|
583 |
+
elif inputs_embeds is not None:
|
584 |
+
batch_size, seq_length, _ = inputs_embeds.shape
|
585 |
+
else:
|
586 |
+
raise ValueError("You have to specify either decoder_input_ids or decoder_inputs_embeds")
|
587 |
+
|
588 |
+
seq_length_with_past = seq_length
|
589 |
+
past_key_values_length = 0
|
590 |
+
|
591 |
+
if past_key_values is not None:
|
592 |
+
past_key_values_length = past_key_values[0][0].shape[2]
|
593 |
+
seq_length_with_past = seq_length_with_past + past_key_values_length
|
594 |
+
|
595 |
+
if position_ids is None:
|
596 |
+
device = input_ids.device if input_ids is not None else inputs_embeds.device
|
597 |
+
position_ids = torch.arange(
|
598 |
+
past_key_values_length, seq_length + past_key_values_length, dtype=torch.long, device=device
|
599 |
+
)
|
600 |
+
position_ids = position_ids.unsqueeze(0).view(-1, seq_length)
|
601 |
+
else:
|
602 |
+
position_ids = position_ids.view(-1, seq_length).long()
|
603 |
+
|
604 |
+
if inputs_embeds is None:
|
605 |
+
inputs_embeds = self.embed_tokens(input_ids)
|
606 |
+
# embed positions
|
607 |
+
if attention_mask is None:
|
608 |
+
attention_mask = torch.ones(
|
609 |
+
(batch_size, seq_length_with_past), dtype=torch.bool, device=inputs_embeds.device
|
610 |
+
)
|
611 |
+
if cross_attention_mask is None:
|
612 |
+
cross_attention_mask = torch.ones(
|
613 |
+
(batch_size, 1), dtype=torch.bool, device=inputs_embeds.device
|
614 |
+
)
|
615 |
+
attention_mask = self._prepare_decoder_attention_mask(
|
616 |
+
attention_mask, (batch_size, seq_length), inputs_embeds, past_key_values_length
|
617 |
+
)
|
618 |
+
|
619 |
+
hidden_states = inputs_embeds
|
620 |
+
|
621 |
+
# decoder layers
|
622 |
+
all_hidden_states = () if output_hidden_states else None
|
623 |
+
all_self_attns = () if output_attentions else None
|
624 |
+
next_decoder_cache = () if use_cache else None
|
625 |
+
|
626 |
+
for idx, decoder_layer in enumerate(self.layers):
|
627 |
+
if output_hidden_states:
|
628 |
+
all_hidden_states += (hidden_states,)
|
629 |
+
|
630 |
+
past_key_value = past_key_values[idx] if past_key_values is not None else None
|
631 |
+
layer_outputs = decoder_layer(
|
632 |
+
hidden_states,
|
633 |
+
encoder_outputs=encoder_outputs,
|
634 |
+
token_type_ids=token_type_ids,
|
635 |
+
attention_mask=attention_mask,
|
636 |
+
cross_attention_mask=cross_attention_mask,
|
637 |
+
position_ids=position_ids,
|
638 |
+
past_key_value=past_key_value,
|
639 |
+
output_attentions=output_attentions,
|
640 |
+
use_cache=use_cache,
|
641 |
+
)
|
642 |
+
hidden_states = layer_outputs[0]
|
643 |
+
|
644 |
+
if use_cache:
|
645 |
+
next_decoder_cache += (layer_outputs[2 if output_attentions else 1],)
|
646 |
+
|
647 |
+
if output_attentions:
|
648 |
+
all_self_attns += (layer_outputs[1],)
|
649 |
+
|
650 |
+
hidden_states = self.norm(hidden_states)
|
651 |
+
|
652 |
+
# add hidden states from the last decoder layer
|
653 |
+
if output_hidden_states:
|
654 |
+
all_hidden_states += (hidden_states,)
|
655 |
+
|
656 |
+
next_cache = next_decoder_cache if use_cache else None
|
657 |
+
if not return_dict:
|
658 |
+
return tuple(v for v in [hidden_states, next_cache, all_hidden_states, all_self_attns] if v is not None)
|
659 |
+
return BaseModelOutputWithPast(
|
660 |
+
last_hidden_state=hidden_states,
|
661 |
+
past_key_values=next_cache,
|
662 |
+
hidden_states=all_hidden_states,
|
663 |
+
attentions=all_self_attns,
|
664 |
+
)
|
665 |
+
|
666 |
+
def get_input_embeddings(self):
|
667 |
+
return self.embed_tokens
|
668 |
+
|
669 |
+
def set_input_embeddings(self, value):
|
670 |
+
self.embed_tokens = value
|
671 |
+
|
672 |
+
# noinspection PyMethodMayBeStatic
|
673 |
+
# Copied from transformers.models.bart.modeling_bart.BartDecoder._prepare_decoder_attention_mask
|
674 |
+
def _prepare_decoder_attention_mask(self, attention_mask, input_shape, inputs_embeds, past_key_values_length):
|
675 |
+
# create causal mask
|
676 |
+
# [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len]
|
677 |
+
combined_attention_mask = None
|
678 |
+
if input_shape[-1] > 1:
|
679 |
+
combined_attention_mask = _make_causal_mask(
|
680 |
+
input_shape,
|
681 |
+
inputs_embeds.dtype,
|
682 |
+
device=inputs_embeds.device,
|
683 |
+
past_key_values_length=past_key_values_length,
|
684 |
+
)
|
685 |
+
|
686 |
+
if attention_mask is not None:
|
687 |
+
# [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len]
|
688 |
+
expanded_attn_mask = _expand_mask(attention_mask, inputs_embeds.dtype, tgt_len=input_shape[-1]).to(
|
689 |
+
inputs_embeds.device
|
690 |
+
)
|
691 |
+
combined_attention_mask = (
|
692 |
+
expanded_attn_mask if combined_attention_mask is None else expanded_attn_mask + combined_attention_mask
|
693 |
+
)
|
694 |
+
|
695 |
+
return combined_attention_mask
|
696 |
+
|
697 |
+
def vqa_history_to_prompt(history, query):
|
698 |
+
# Only support single round chat in vqa mode
|
699 |
+
prompt = "<EOI>Question: "
|
700 |
+
# for i, (old_query, response) in enumerate(history):
|
701 |
+
# prompt += old_query + " Short answer: " + response + " Question: "
|
702 |
+
prompt += query + " Short answer:"
|
703 |
+
return prompt
|
704 |
+
|
705 |
+
def chat_old_history_to_prompt(history, query):
|
706 |
+
prompt = "<EOI>Question: "
|
707 |
+
for i, (old_query, response) in enumerate(history):
|
708 |
+
prompt += old_query + " Answer: " + response + "\nQuestion: "
|
709 |
+
prompt += query + " Answer:"
|
710 |
+
return prompt
|
711 |
+
|
712 |
+
def chat_history_to_prompt(history, query):
|
713 |
+
prompt = " [INST] "
|
714 |
+
for i, (old_query, response) in enumerate(history):
|
715 |
+
prompt += old_query + " [/INST] " + response + " [INST] "
|
716 |
+
prompt += query + " [/INST] "
|
717 |
+
return prompt
|
718 |
+
|
719 |
+
|
720 |
+
def base_history_to_prompt(history, query):
|
721 |
+
prompt = query
|
722 |
+
return prompt
|
723 |
+
|
724 |
+
|
725 |
+
_history_to_prompt = {
|
726 |
+
"base": base_history_to_prompt,
|
727 |
+
"chat": chat_history_to_prompt,
|
728 |
+
"chat_old": chat_old_history_to_prompt,
|
729 |
+
"vqa": vqa_history_to_prompt
|
730 |
+
}
|
731 |
+
|
732 |
+
|
733 |
+
class CogAgentForCausalLM(CogAgentPreTrainedModel):
|
734 |
+
_auto_class = "AutoModelForCausalLM"
|
735 |
+
|
736 |
+
def __init__(self, config):
|
737 |
+
super().__init__(config)
|
738 |
+
self.model = CogAgentModel(config)
|
739 |
+
self.vocab_size = config.vocab_size
|
740 |
+
self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
|
741 |
+
|
742 |
+
# Initialize weights and apply final processing
|
743 |
+
self.post_init()
|
744 |
+
|
745 |
+
def get_input_embeddings(self):
|
746 |
+
return self.model.embed_tokens
|
747 |
+
|
748 |
+
def set_input_embeddings(self, value):
|
749 |
+
self.model.embed_tokens = value
|
750 |
+
|
751 |
+
def get_output_embeddings(self):
|
752 |
+
return self.lm_head
|
753 |
+
|
754 |
+
def set_output_embeddings(self, new_embeddings):
|
755 |
+
self.lm_head = new_embeddings
|
756 |
+
|
757 |
+
def set_decoder(self, decoder):
|
758 |
+
self.model = decoder
|
759 |
+
|
760 |
+
def get_decoder(self):
|
761 |
+
return self.model
|
762 |
+
|
763 |
+
def forward(
|
764 |
+
self,
|
765 |
+
input_ids: torch.LongTensor = None,
|
766 |
+
images: List[List[torch.Tensor]] = None,
|
767 |
+
cross_images: List[List[torch.Tensor]] = None,
|
768 |
+
token_type_ids: Optional[torch.LongTensor] = None,
|
769 |
+
attention_mask: Optional[torch.Tensor] = None,
|
770 |
+
position_ids: Optional[torch.LongTensor] = None,
|
771 |
+
past_key_values: Optional[List[torch.FloatTensor]] = None,
|
772 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
773 |
+
use_cache: Optional[bool] = None,
|
774 |
+
output_attentions: Optional[bool] = None,
|
775 |
+
output_hidden_states: Optional[bool] = None,
|
776 |
+
return_dict: Optional[bool] = None,
|
777 |
+
labels: Optional[torch.LongTensor] = None,
|
778 |
+
) -> Union[Tuple, CausalLMOutputWithPast]:
|
779 |
+
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
780 |
+
output_hidden_states = (
|
781 |
+
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
782 |
+
)
|
783 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
784 |
+
|
785 |
+
# decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn)
|
786 |
+
outputs = self.model(
|
787 |
+
input_ids=input_ids,
|
788 |
+
images=images,
|
789 |
+
cross_images=cross_images,
|
790 |
+
token_type_ids=token_type_ids,
|
791 |
+
attention_mask=attention_mask,
|
792 |
+
position_ids=position_ids,
|
793 |
+
past_key_values=past_key_values,
|
794 |
+
inputs_embeds=inputs_embeds,
|
795 |
+
use_cache=use_cache,
|
796 |
+
output_attentions=output_attentions,
|
797 |
+
output_hidden_states=output_hidden_states,
|
798 |
+
return_dict=return_dict,
|
799 |
+
)
|
800 |
+
|
801 |
+
hidden_states = outputs[0]
|
802 |
+
logits = self.lm_head(hidden_states)
|
803 |
+
logits = logits.float()
|
804 |
+
|
805 |
+
loss = None
|
806 |
+
if labels is not None:
|
807 |
+
# Shift so that tokens < n predict n
|
808 |
+
shift_logits = logits[..., :-1, :].contiguous()
|
809 |
+
shift_labels = labels[..., 1:].contiguous()
|
810 |
+
# Flatten the tokens
|
811 |
+
loss_fct = CrossEntropyLoss()
|
812 |
+
shift_logits = shift_logits.view(-1, self.config.vocab_size)
|
813 |
+
shift_labels = shift_labels.view(-1)
|
814 |
+
# Enable model parallelism
|
815 |
+
shift_labels = shift_labels.to(shift_logits.device)
|
816 |
+
loss = loss_fct(shift_logits, shift_labels)
|
817 |
+
|
818 |
+
if not return_dict:
|
819 |
+
output = (logits,) + outputs[1:]
|
820 |
+
return (loss,) + output if loss is not None else output
|
821 |
+
|
822 |
+
return CausalLMOutputWithPast(
|
823 |
+
loss=loss,
|
824 |
+
logits=logits,
|
825 |
+
past_key_values=outputs.past_key_values,
|
826 |
+
hidden_states=outputs.hidden_states,
|
827 |
+
attentions=outputs.attentions,
|
828 |
+
)
|
829 |
+
|
830 |
+
def _prepare_attention_mask_for_generation(
|
831 |
+
self,
|
832 |
+
inputs: torch.Tensor,
|
833 |
+
pad_token_id: Optional[int],
|
834 |
+
eos_token_id: Optional[Union[int, List[int]]],
|
835 |
+
) -> torch.LongTensor:
|
836 |
+
return torch.ones(inputs.shape[:2], dtype=torch.long, device=inputs.device) # type: ignore
|
837 |
+
|
838 |
+
def prepare_inputs_for_generation(
|
839 |
+
self, input_ids, token_type_ids, images=None, cross_images=None, past_key_values=None, attention_mask=None, inputs_embeds=None, **kwargs
|
840 |
+
):
|
841 |
+
# build position_ids if needed
|
842 |
+
position_ids = kwargs.get("position_ids", None)
|
843 |
+
if position_ids is None:
|
844 |
+
position_ids = build_position_ids(token_type_ids, attention_mask)
|
845 |
+
|
846 |
+
if past_key_values:
|
847 |
+
input_ids = input_ids[:, -1:]
|
848 |
+
token_type_ids = token_type_ids[:, -1:]
|
849 |
+
position_ids = position_ids[:, -1:]
|
850 |
+
|
851 |
+
# if `inputs_embeds` are passed, we only want to use them in the 1st generation step
|
852 |
+
if inputs_embeds is not None and past_key_values is None:
|
853 |
+
model_inputs = {"inputs_embeds": inputs_embeds}
|
854 |
+
else:
|
855 |
+
model_inputs = {"input_ids": input_ids}
|
856 |
+
|
857 |
+
model_inputs.update(
|
858 |
+
{
|
859 |
+
"token_type_ids": token_type_ids,
|
860 |
+
"images": images,
|
861 |
+
"cross_images": cross_images,
|
862 |
+
"position_ids": position_ids,
|
863 |
+
"past_key_values": past_key_values,
|
864 |
+
"use_cache": kwargs.get("use_cache"),
|
865 |
+
"attention_mask": attention_mask,
|
866 |
+
}
|
867 |
+
)
|
868 |
+
return model_inputs
|
869 |
+
|
870 |
+
def _update_model_kwargs_for_generation(
|
871 |
+
self,
|
872 |
+
outputs: "ModelOutput",
|
873 |
+
model_kwargs: Dict[str, Any],
|
874 |
+
is_encoder_decoder: bool = False,
|
875 |
+
standardize_cache_format: bool = False,
|
876 |
+
) -> Dict[str, Any]:
|
877 |
+
# update past_key_values
|
878 |
+
model_kwargs["past_key_values"] = self._extract_past_from_model_output(
|
879 |
+
outputs, standardize_cache_format=standardize_cache_format
|
880 |
+
)
|
881 |
+
if getattr(outputs, "state", None) is not None:
|
882 |
+
model_kwargs["state"] = outputs.state
|
883 |
+
|
884 |
+
# update token_type_ids with last value
|
885 |
+
if "token_type_ids" in model_kwargs:
|
886 |
+
token_type_ids = model_kwargs["token_type_ids"]
|
887 |
+
new_token_type_ids = torch.ones(size=(token_type_ids.shape[0], 1), dtype=token_type_ids.dtype, device=token_type_ids.device) * LANGUAGE_TOKEN_TYPE
|
888 |
+
model_kwargs["token_type_ids"] = torch.cat([token_type_ids, new_token_type_ids], dim=-1)
|
889 |
+
|
890 |
+
if not is_encoder_decoder:
|
891 |
+
# update attention mask
|
892 |
+
if "attention_mask" in model_kwargs:
|
893 |
+
attention_mask = model_kwargs["attention_mask"]
|
894 |
+
model_kwargs["attention_mask"] = torch.cat(
|
895 |
+
[attention_mask, attention_mask.new_ones((attention_mask.shape[0], 1))], dim=-1
|
896 |
+
)
|
897 |
+
else:
|
898 |
+
# update decoder attention mask
|
899 |
+
if "decoder_attention_mask" in model_kwargs:
|
900 |
+
decoder_attention_mask = model_kwargs["decoder_attention_mask"]
|
901 |
+
model_kwargs["decoder_attention_mask"] = torch.cat(
|
902 |
+
[decoder_attention_mask, decoder_attention_mask.new_ones((decoder_attention_mask.shape[0], 1))],
|
903 |
+
dim=-1,
|
904 |
+
)
|
905 |
+
|
906 |
+
return model_kwargs
|
907 |
+
|
908 |
+
def _reorder_cache(self, past_key_values, beam_idx):
|
909 |
+
reordered_past = ()
|
910 |
+
for layer_past in past_key_values:
|
911 |
+
reordered_past += (
|
912 |
+
tuple(past_state.index_select(0, beam_idx.to(past_state.device)) for past_state in layer_past),
|
913 |
+
)
|
914 |
+
return reordered_past
|
915 |
+
|
916 |
+
def build_conversation_input_ids(
|
917 |
+
self,
|
918 |
+
tokenizer: "PreTrainedTokenizer",
|
919 |
+
*,
|
920 |
+
query: str,
|
921 |
+
history: Optional[List[Tuple[str, str]]] = None,
|
922 |
+
images: Optional[List["PIL.Image"]] = None,
|
923 |
+
template_version: Optional[Literal["base", "chat", "vqa"]] = None,
|
924 |
+
):
|
925 |
+
image_size: int = self.config.vision_config['image_size']
|
926 |
+
cross_image_size: int = self.config.cross_image_size
|
927 |
+
patch_size: int = self.config.vision_config['patch_size']
|
928 |
+
template_version = template_version or self.config.template_version
|
929 |
+
assert images is None or len(images) <= 1, f"not support multi images by now."
|
930 |
+
history = history or []
|
931 |
+
text = _history_to_prompt[template_version](history, query)
|
932 |
+
|
933 |
+
input_ids = [tokenizer.bos_token_id]
|
934 |
+
token_type_ids = [LANGUAGE_TOKEN_TYPE]
|
935 |
+
if images is not None and len(images) == 1:
|
936 |
+
ori = images
|
937 |
+
# vision
|
938 |
+
transform = transforms.Compose(
|
939 |
+
[
|
940 |
+
transforms.Resize(
|
941 |
+
(image_size, image_size), interpolation=transforms.InterpolationMode.BICUBIC
|
942 |
+
),
|
943 |
+
transforms.ToTensor(),
|
944 |
+
transforms.Normalize((0.48145466, 0.4578275, 0.40821073), (0.26862954, 0.26130258, 0.27577711)),
|
945 |
+
]
|
946 |
+
)
|
947 |
+
images = [transform(ori[0])]
|
948 |
+
cross_transform = transforms.Compose(
|
949 |
+
[
|
950 |
+
transforms.Resize(
|
951 |
+
(cross_image_size, cross_image_size), interpolation=transforms.InterpolationMode.BICUBIC
|
952 |
+
),
|
953 |
+
transforms.ToTensor(),
|
954 |
+
transforms.Normalize((0.48145466, 0.4578275, 0.40821073), (0.26862954, 0.26130258, 0.27577711)),
|
955 |
+
]
|
956 |
+
)
|
957 |
+
cross_images = [cross_transform(ori[0])]
|
958 |
+
# language
|
959 |
+
vision_token_num = (image_size // patch_size) * (image_size // patch_size) + 2
|
960 |
+
input_ids += [tokenizer.pad_token_id] * vision_token_num
|
961 |
+
token_type_ids += [VISION_TOKEN_TYPE] * vision_token_num
|
962 |
+
text_ids = tokenizer.encode(text, add_special_tokens=False)
|
963 |
+
|
964 |
+
input_ids += text_ids
|
965 |
+
token_type_ids += [LANGUAGE_TOKEN_TYPE] * len(text_ids)
|
966 |
+
attention_mask = [1] * len(input_ids)
|
967 |
+
|
968 |
+
return {
|
969 |
+
'input_ids': torch.tensor(input_ids, dtype=torch.long),
|
970 |
+
'token_type_ids': torch.tensor(token_type_ids, dtype=torch.long),
|
971 |
+
'attention_mask': torch.tensor(attention_mask, dtype=torch.long),
|
972 |
+
'images': images,
|
973 |
+
'cross_images': cross_images
|
974 |
+
}
|
pytorch_model-00001-of-00004.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:8d09e6d7a4f2620d2d32c839747af292cbfbdf6cc9c35ea5a6619b30ef820856
|
3 |
+
size 4979106642
|
pytorch_model-00002-of-00004.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:6dbaddf8f16b064c0f6d55f97cd492fd44cbc3e20bb812d27f4e968d4010b63f
|
3 |
+
size 4987736182
|
pytorch_model-00003-of-00004.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:96aa4207396b0794637891ffee4d900af383c74c2e7b4f00c0115c0eb6630f24
|
3 |
+
size 4974066815
|
pytorch_model-00004-of-00004.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:5d8172706e1fcf3be3e3c9f96baac7f1cf42c984a8360423d58373f8d5f3afec
|
3 |
+
size 3654473430
|
pytorch_model.bin.index.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
special_tokens_map.json
ADDED
@@ -0,0 +1,30 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"bos_token": {
|
3 |
+
"content": "<s>",
|
4 |
+
"lstrip": false,
|
5 |
+
"normalized": false,
|
6 |
+
"rstrip": false,
|
7 |
+
"single_word": false
|
8 |
+
},
|
9 |
+
"eos_token": {
|
10 |
+
"content": "</s>",
|
11 |
+
"lstrip": false,
|
12 |
+
"normalized": false,
|
13 |
+
"rstrip": false,
|
14 |
+
"single_word": false
|
15 |
+
},
|
16 |
+
"pad_token": {
|
17 |
+
"content": "<unk>",
|
18 |
+
"lstrip": false,
|
19 |
+
"normalized": false,
|
20 |
+
"rstrip": false,
|
21 |
+
"single_word": false
|
22 |
+
},
|
23 |
+
"unk_token": {
|
24 |
+
"content": "<unk>",
|
25 |
+
"lstrip": false,
|
26 |
+
"normalized": false,
|
27 |
+
"rstrip": false,
|
28 |
+
"single_word": false
|
29 |
+
}
|
30 |
+
}
|
tokenizer.model
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:9e556afd44213b6bd1be2b850ebbbd98f5481437a8021afaf58ee7fb1818d347
|
3 |
+
size 499723
|
tokenizer_config.json
ADDED
@@ -0,0 +1,43 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"add_bos_token": true,
|
3 |
+
"add_eos_token": false,
|
4 |
+
"add_prefix_space": true,
|
5 |
+
"added_tokens_decoder": {
|
6 |
+
"0": {
|
7 |
+
"content": "<unk>",
|
8 |
+
"lstrip": false,
|
9 |
+
"normalized": false,
|
10 |
+
"rstrip": false,
|
11 |
+
"single_word": false,
|
12 |
+
"special": true
|
13 |
+
},
|
14 |
+
"1": {
|
15 |
+
"content": "<s>",
|
16 |
+
"lstrip": false,
|
17 |
+
"normalized": false,
|
18 |
+
"rstrip": false,
|
19 |
+
"single_word": false,
|
20 |
+
"special": true
|
21 |
+
},
|
22 |
+
"2": {
|
23 |
+
"content": "</s>",
|
24 |
+
"lstrip": false,
|
25 |
+
"normalized": false,
|
26 |
+
"rstrip": false,
|
27 |
+
"single_word": false,
|
28 |
+
"special": true
|
29 |
+
}
|
30 |
+
},
|
31 |
+
"bos_token": "<s>",
|
32 |
+
"clean_up_tokenization_spaces": false,
|
33 |
+
"eos_token": "</s>",
|
34 |
+
"legacy": false,
|
35 |
+
"model_max_length": 4096,
|
36 |
+
"pad_token": "<unk>",
|
37 |
+
"padding_side": "right",
|
38 |
+
"sp_model_kwargs": {},
|
39 |
+
"spaces_between_special_tokens": false,
|
40 |
+
"tokenizer_class": "LlamaTokenizer",
|
41 |
+
"unk_token": "<unk>",
|
42 |
+
"use_default_system_prompt": false
|
43 |
+
}
|
visual.py
ADDED
@@ -0,0 +1,136 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
from torch import nn
|
3 |
+
from argparse import Namespace
|
4 |
+
import xformers.ops as xops
|
5 |
+
from transformers.activations import ACT2FN
|
6 |
+
|
7 |
+
|
8 |
+
class PatchEmbedding(nn.Module):
|
9 |
+
def __init__(self, config):
|
10 |
+
super().__init__()
|
11 |
+
self.proj = nn.Conv2d(config.in_channels, config.hidden_size, kernel_size=config.patch_size, stride=config.patch_size)
|
12 |
+
self.cls_embedding = nn.Parameter(torch.zeros(1, config.hidden_size))
|
13 |
+
self.position_embedding = nn.Embedding(config.num_positions, config.hidden_size)
|
14 |
+
|
15 |
+
def forward(self, images: "tensor(B, C, H, W)") -> "tensor(B, L, D)":
|
16 |
+
x = self.proj(images)
|
17 |
+
x = x.flatten(2).transpose(1, 2)
|
18 |
+
cls_token = self.cls_embedding.expand(x.shape[0], -1, -1)
|
19 |
+
x = torch.cat((cls_token, x), dim=1)
|
20 |
+
x += self.position_embedding.weight.unsqueeze(0)
|
21 |
+
return x
|
22 |
+
|
23 |
+
|
24 |
+
class Attention(nn.Module):
|
25 |
+
def __init__(self, config):
|
26 |
+
super().__init__()
|
27 |
+
self.num_heads = config.num_heads
|
28 |
+
head_dim = config.hidden_size // config.num_heads
|
29 |
+
self.scale = head_dim ** -0.5
|
30 |
+
self.query_key_value = nn.Linear(config.hidden_size, config.hidden_size * 3)
|
31 |
+
self.dense = nn.Linear(config.hidden_size, config.hidden_size)
|
32 |
+
self.output_dropout = torch.nn.Dropout(config.dropout_prob)
|
33 |
+
|
34 |
+
def forward(self, x: "tensor(B, L, D)") -> "tensor(B, L, D)":
|
35 |
+
B, L, _ = x.shape
|
36 |
+
qkv = self.query_key_value(x)
|
37 |
+
qkv = qkv.reshape(B, L, 3, self.num_heads, -1).permute(2, 0, 1, 3, 4) # 3, B, L, H, D
|
38 |
+
q, k, v = qkv[0], qkv[1], qkv[2]
|
39 |
+
|
40 |
+
out = xops.memory_efficient_attention(
|
41 |
+
q, k, v, scale=self.scale,
|
42 |
+
)
|
43 |
+
output = self.dense(out.view(B, L, -1))
|
44 |
+
output = self.output_dropout(output)
|
45 |
+
return output
|
46 |
+
|
47 |
+
def attention(self, q, k, v):
|
48 |
+
attn_weights = torch.matmul(q * self.scale, k.transpose(-2, -1))
|
49 |
+
attn_weights = attn_weights.softmax(dim=-1)
|
50 |
+
output = torch.matmul(attn_weights, v)
|
51 |
+
return output
|
52 |
+
|
53 |
+
|
54 |
+
class MLP(nn.Module):
|
55 |
+
def __init__(self, config):
|
56 |
+
super().__init__()
|
57 |
+
self.config = config
|
58 |
+
self.activation_fn = ACT2FN[config.hidden_act]
|
59 |
+
self.fc1 = nn.Linear(config.hidden_size, config.intermediate_size)
|
60 |
+
self.fc2 = nn.Linear(config.intermediate_size, config.hidden_size)
|
61 |
+
|
62 |
+
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
63 |
+
x = self.fc1(x)
|
64 |
+
x = self.activation_fn(x)
|
65 |
+
x = self.fc2(x)
|
66 |
+
return x
|
67 |
+
|
68 |
+
|
69 |
+
class TransformerLayer(nn.Module):
|
70 |
+
def __init__(self, config):
|
71 |
+
super().__init__()
|
72 |
+
self.input_layernorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
|
73 |
+
self.attention = Attention(config)
|
74 |
+
self.mlp = MLP(config)
|
75 |
+
self.post_attention_layernorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
|
76 |
+
|
77 |
+
def forward(self, hidden_states):
|
78 |
+
attention_input = hidden_states
|
79 |
+
attention_output = self.input_layernorm(self.attention(attention_input))
|
80 |
+
hidden_states = attention_input + attention_output
|
81 |
+
mlp_input = hidden_states
|
82 |
+
mlp_output = self.post_attention_layernorm(self.mlp(mlp_input))
|
83 |
+
output = mlp_input + mlp_output
|
84 |
+
return output
|
85 |
+
|
86 |
+
|
87 |
+
class Transformer(nn.Module):
|
88 |
+
def __init__(self, config):
|
89 |
+
super().__init__()
|
90 |
+
self.layers = nn.ModuleList([TransformerLayer(config) for _ in range(config.num_hidden_layers)])
|
91 |
+
|
92 |
+
def forward(self, hidden_states):
|
93 |
+
for layer_module in self.layers:
|
94 |
+
hidden_states = layer_module(hidden_states)
|
95 |
+
return hidden_states
|
96 |
+
|
97 |
+
|
98 |
+
class GLU(nn.Module):
|
99 |
+
def __init__(self, config, in_features):
|
100 |
+
super().__init__()
|
101 |
+
self.linear_proj = nn.Linear(in_features, config.hidden_size, bias=False)
|
102 |
+
self.norm1 = nn.LayerNorm(config.hidden_size)
|
103 |
+
self.act1 = nn.GELU()
|
104 |
+
self.act2 = nn.functional.silu
|
105 |
+
self.dense_h_to_4h = nn.Linear(config.hidden_size, config.intermediate_size, bias=False)
|
106 |
+
self.gate_proj = nn.Linear(config.hidden_size, config.intermediate_size, bias=False)
|
107 |
+
self.dense_4h_to_h = nn.Linear(config.intermediate_size, config.hidden_size, bias=False)
|
108 |
+
|
109 |
+
def forward(self, x):
|
110 |
+
x = self.linear_proj(x)
|
111 |
+
x = self.act1(self.norm1(x))
|
112 |
+
x = self.act2(self.gate_proj(x)) * self.dense_h_to_4h(x)
|
113 |
+
x = self.dense_4h_to_h(x)
|
114 |
+
return x
|
115 |
+
|
116 |
+
|
117 |
+
class EVA2CLIPModel(nn.Module):
|
118 |
+
def __init__(self, config):
|
119 |
+
super().__init__()
|
120 |
+
vision_config = Namespace(**config.vision_config)
|
121 |
+
self.patch_embedding = PatchEmbedding(vision_config)
|
122 |
+
self.transformer = Transformer(vision_config)
|
123 |
+
self.linear_proj = GLU(config, in_features=vision_config.hidden_size)
|
124 |
+
self.boi = nn.Parameter(torch.zeros(1, 1, config.hidden_size))
|
125 |
+
self.eoi = nn.Parameter(torch.zeros(1, 1, config.hidden_size))
|
126 |
+
self.pos_embed = nn.Parameter(torch.zeros((vision_config.image_size // vision_config.patch_size) ** 2, vision_config.hidden_size))
|
127 |
+
|
128 |
+
def forward(self, images: "tensor(B, C, H, W)") -> "tensor(B, L, D)":
|
129 |
+
x = self.patch_embedding(images)
|
130 |
+
x = self.transformer(x)
|
131 |
+
x = x[:, 1:]
|
132 |
+
x = self.linear_proj(x + self.pos_embed.to(x.device).unsqueeze(0))
|
133 |
+
boi = self.boi.to(x.device).expand(x.shape[0], -1, -1)
|
134 |
+
eoi = self.eoi.to(x.device).expand(x.shape[0], -1, -1)
|
135 |
+
x = torch.cat((boi, x, eoi), dim=1)
|
136 |
+
return x
|