Update handler.py
Browse files- handler.py +35 -13
handler.py
CHANGED
@@ -3,39 +3,61 @@ import torch
|
|
3 |
from torchvision import transforms
|
4 |
from PIL import Image
|
5 |
from safetensors.torch import load_file
|
6 |
-
from timm import create_model
|
7 |
|
8 |
|
9 |
-
class EndpointHandler:
|
|
|
|
|
10 |
def __init__(self, model_dir: str):
|
|
|
11 |
self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
12 |
|
13 |
# تحميل الوزن بصيغة safetensors
|
14 |
-
|
|
|
|
|
|
|
15 |
self.model = create_model("vit_base_patch16_224", num_classes=5)
|
16 |
self.model.load_state_dict(weights)
|
17 |
self.model.eval().to(self.device)
|
18 |
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
|
|
|
|
|
|
23 |
|
24 |
-
self.labels = [
|
|
|
|
|
|
|
|
|
|
|
|
|
25 |
|
|
|
26 |
def _prep(self, img: Image.Image):
|
27 |
return self.transform(img.convert("RGB")).unsqueeze(0).to(self.device)
|
28 |
|
|
|
29 |
def __call__(self, data):
|
30 |
-
|
|
|
|
|
|
|
|
|
31 |
img = None
|
32 |
if isinstance(data, Image.Image):
|
33 |
img = data
|
34 |
elif isinstance(data, dict):
|
35 |
-
|
36 |
-
if isinstance(
|
37 |
-
|
38 |
-
|
|
|
39 |
|
40 |
if img is None:
|
41 |
return {"error": "No image provided"}
|
|
|
3 |
from torchvision import transforms
|
4 |
from PIL import Image
|
5 |
from safetensors.torch import load_file
|
6 |
+
from timm import create_model # timm ضروري لتشغيل ViT
|
7 |
|
8 |
|
9 |
+
class EndpointHandler:
|
10 |
+
"""Custom pipeline for Hugging Face Inference Endpoints."""
|
11 |
+
|
12 |
def __init__(self, model_dir: str):
|
13 |
+
# اختَر GPU إذا متاح
|
14 |
self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
15 |
|
16 |
# تحميل الوزن بصيغة safetensors
|
17 |
+
weights_path = os.path.join(model_dir, "model.safetensors")
|
18 |
+
weights = load_file(weights_path)
|
19 |
+
|
20 |
+
# إنشاء نموذج ViT مطابق لِما درّبتَه
|
21 |
self.model = create_model("vit_base_patch16_224", num_classes=5)
|
22 |
self.model.load_state_dict(weights)
|
23 |
self.model.eval().to(self.device)
|
24 |
|
25 |
+
# تحويـلات الصورة
|
26 |
+
self.transform = transforms.Compose(
|
27 |
+
[
|
28 |
+
transforms.Resize((224, 224), interpolation=Image.BICUBIC),
|
29 |
+
transforms.ToTensor(),
|
30 |
+
]
|
31 |
+
)
|
32 |
|
33 |
+
self.labels = [
|
34 |
+
"stable_diffusion",
|
35 |
+
"midjourney",
|
36 |
+
"dalle",
|
37 |
+
"real",
|
38 |
+
"other_ai",
|
39 |
+
]
|
40 |
|
41 |
+
# ---------- helpers ----------
|
42 |
def _prep(self, img: Image.Image):
|
43 |
return self.transform(img.convert("RGB")).unsqueeze(0).to(self.device)
|
44 |
|
45 |
+
# ---------- main entry ----------
|
46 |
def __call__(self, data):
|
47 |
+
"""
|
48 |
+
يدعم:
|
49 |
+
• Widget: يستلم PIL.Image
|
50 |
+
• REST API: يستلم base64 فى data["inputs"] أو data["image"]
|
51 |
+
"""
|
52 |
img = None
|
53 |
if isinstance(data, Image.Image):
|
54 |
img = data
|
55 |
elif isinstance(data, dict):
|
56 |
+
b64 = data.get("inputs") or data.get("image")
|
57 |
+
if isinstance(b64, (str, bytes)):
|
58 |
+
if isinstance(b64, str):
|
59 |
+
b64 = b64.encode()
|
60 |
+
img = Image.open(io.BytesIO(base64.b64decode(b64)))
|
61 |
|
62 |
if img is None:
|
63 |
return {"error": "No image provided"}
|