Add SetFit model
Browse files- 1_Pooling/config.json +10 -0
- README.md +184 -0
- config.json +24 -0
- config_sentence_transformers.json +10 -0
- config_setfit.json +7 -0
- model.safetensors +3 -0
- model_head.pkl +3 -0
- modules.json +14 -0
- sentence_bert_config.json +4 -0
- special_tokens_map.json +51 -0
- tokenizer.json +0 -0
- tokenizer_config.json +59 -0
- vocab.txt +0 -0
1_Pooling/config.json
ADDED
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"word_embedding_dimension": 768,
|
3 |
+
"pooling_mode_cls_token": false,
|
4 |
+
"pooling_mode_mean_tokens": true,
|
5 |
+
"pooling_mode_max_tokens": false,
|
6 |
+
"pooling_mode_mean_sqrt_len_tokens": false,
|
7 |
+
"pooling_mode_weightedmean_tokens": false,
|
8 |
+
"pooling_mode_lasttoken": false,
|
9 |
+
"include_prompt": true
|
10 |
+
}
|
README.md
ADDED
@@ -0,0 +1,184 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
base_model: sentence-transformers/paraphrase-mpnet-base-v2
|
3 |
+
library_name: setfit
|
4 |
+
metrics:
|
5 |
+
- accuracy
|
6 |
+
pipeline_tag: text-classification
|
7 |
+
tags:
|
8 |
+
- setfit
|
9 |
+
- sentence-transformers
|
10 |
+
- text-classification
|
11 |
+
- generated_from_setfit_trainer
|
12 |
+
widget:
|
13 |
+
- text: X9.31 PRNG seed keys Triple-DES (112 bit) Generated by gathering entropy.
|
14 |
+
- text: PRNG seed key Pre-loaded during the manufacturing process, compiled in the
|
15 |
+
binary.
|
16 |
+
- text: ANSI X9.31 PRNG key Triple DES key Generated internally by non-approved RNG
|
17 |
+
Volatile memory only (plaintext) Zeroized when the module reboots.
|
18 |
+
- text: All CSPs are injected during manufacture.
|
19 |
+
- text: The internal DRBG state value of the RNG is stored in NVRAM for persistent
|
20 |
+
use.
|
21 |
+
inference: true
|
22 |
+
---
|
23 |
+
|
24 |
+
# SetFit with sentence-transformers/paraphrase-mpnet-base-v2
|
25 |
+
|
26 |
+
This is a [SetFit](https://github.com/huggingface/setfit) model that can be used for Text Classification. This SetFit model uses [sentence-transformers/paraphrase-mpnet-base-v2](https://huggingface.co/sentence-transformers/paraphrase-mpnet-base-v2) as the Sentence Transformer embedding model. A [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance is used for classification.
|
27 |
+
|
28 |
+
The model has been trained using an efficient few-shot learning technique that involves:
|
29 |
+
|
30 |
+
1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning.
|
31 |
+
2. Training a classification head with features from the fine-tuned Sentence Transformer.
|
32 |
+
|
33 |
+
## Model Details
|
34 |
+
|
35 |
+
### Model Description
|
36 |
+
- **Model Type:** SetFit
|
37 |
+
- **Sentence Transformer body:** [sentence-transformers/paraphrase-mpnet-base-v2](https://huggingface.co/sentence-transformers/paraphrase-mpnet-base-v2)
|
38 |
+
- **Classification head:** a [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance
|
39 |
+
- **Maximum Sequence Length:** 512 tokens
|
40 |
+
- **Number of Classes:** 2 classes
|
41 |
+
<!-- - **Training Dataset:** [Unknown](https://huggingface.co/datasets/unknown) -->
|
42 |
+
<!-- - **Language:** Unknown -->
|
43 |
+
<!-- - **License:** Unknown -->
|
44 |
+
|
45 |
+
### Model Sources
|
46 |
+
|
47 |
+
- **Repository:** [SetFit on GitHub](https://github.com/huggingface/setfit)
|
48 |
+
- **Paper:** [Efficient Few-Shot Learning Without Prompts](https://arxiv.org/abs/2209.11055)
|
49 |
+
- **Blogpost:** [SetFit: Efficient Few-Shot Learning Without Prompts](https://huggingface.co/blog/setfit)
|
50 |
+
|
51 |
+
### Model Labels
|
52 |
+
| Label | Examples |
|
53 |
+
|:---------|:----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|
54 |
+
| negative | <ul><li>'PRNG ANSI X9.31 Key K1, K2 Internal 3DES Key Automatically Generated per seeding This is an internal key used for ANSI X9.31 192 bits Internal Key generate from the seed and seed key'</li><li>'ANSI X9.31 PRNG key AES-128 Generated internally by the Kernel.'</li><li>'The seed key is used as an input to the X9.31 RNG, a deterministic random number generator, and is generally not stored long term.'</li></ul> |
|
55 |
+
| positive | <ul><li>'The ANSI X9.31 RNG is seeded using a 128-bit AES seed key generated external to the module.'</li><li>'An AES-256 seed key generated during manufacturing is used to initialize the RNG in the encryption algorithm.'</li><li>'PRNG seed key is static during the lifetime of the module.'</li></ul> |
|
56 |
+
|
57 |
+
## Uses
|
58 |
+
|
59 |
+
### Direct Use for Inference
|
60 |
+
|
61 |
+
First install the SetFit library:
|
62 |
+
|
63 |
+
```bash
|
64 |
+
pip install setfit
|
65 |
+
```
|
66 |
+
|
67 |
+
Then you can load this model and run inference.
|
68 |
+
|
69 |
+
```python
|
70 |
+
from setfit import SetFitModel
|
71 |
+
|
72 |
+
# Download from the 🤗 Hub
|
73 |
+
model = SetFitModel.from_pretrained("yasirdemircan/setfit_rng_v5")
|
74 |
+
# Run inference
|
75 |
+
preds = model("All CSPs are injected during manufacture.")
|
76 |
+
```
|
77 |
+
|
78 |
+
<!--
|
79 |
+
### Downstream Use
|
80 |
+
|
81 |
+
*List how someone could finetune this model on their own dataset.*
|
82 |
+
-->
|
83 |
+
|
84 |
+
<!--
|
85 |
+
### Out-of-Scope Use
|
86 |
+
|
87 |
+
*List how the model may foreseeably be misused and address what users ought not to do with the model.*
|
88 |
+
-->
|
89 |
+
|
90 |
+
<!--
|
91 |
+
## Bias, Risks and Limitations
|
92 |
+
|
93 |
+
*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
|
94 |
+
-->
|
95 |
+
|
96 |
+
<!--
|
97 |
+
### Recommendations
|
98 |
+
|
99 |
+
*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
|
100 |
+
-->
|
101 |
+
|
102 |
+
## Training Details
|
103 |
+
|
104 |
+
### Training Set Metrics
|
105 |
+
| Training set | Min | Median | Max |
|
106 |
+
|:-------------|:----|:--------|:----|
|
107 |
+
| Word count | 6 | 20.8222 | 59 |
|
108 |
+
|
109 |
+
| Label | Training Sample Count |
|
110 |
+
|:---------|:----------------------|
|
111 |
+
| negative | 21 |
|
112 |
+
| positive | 24 |
|
113 |
+
|
114 |
+
### Training Hyperparameters
|
115 |
+
- batch_size: (16, 16)
|
116 |
+
- num_epochs: (4, 4)
|
117 |
+
- max_steps: -1
|
118 |
+
- sampling_strategy: oversampling
|
119 |
+
- body_learning_rate: (2e-05, 1e-05)
|
120 |
+
- head_learning_rate: 0.01
|
121 |
+
- loss: CosineSimilarityLoss
|
122 |
+
- distance_metric: cosine_distance
|
123 |
+
- margin: 0.25
|
124 |
+
- end_to_end: False
|
125 |
+
- use_amp: False
|
126 |
+
- warmup_proportion: 0.1
|
127 |
+
- l2_weight: 0.01
|
128 |
+
- seed: 42
|
129 |
+
- eval_max_steps: -1
|
130 |
+
- load_best_model_at_end: True
|
131 |
+
|
132 |
+
### Training Results
|
133 |
+
| Epoch | Step | Training Loss | Validation Loss |
|
134 |
+
|:------:|:----:|:-------------:|:---------------:|
|
135 |
+
| 0.0294 | 1 | 0.2472 | - |
|
136 |
+
| 1.0 | 34 | - | 0.2296 |
|
137 |
+
| 1.4706 | 50 | 0.0969 | - |
|
138 |
+
| 2.0 | 68 | - | 0.3144 |
|
139 |
+
| 2.9412 | 100 | 0.0006 | - |
|
140 |
+
| 3.0 | 102 | - | 0.3090 |
|
141 |
+
| 4.0 | 136 | - | 0.3083 |
|
142 |
+
|
143 |
+
### Framework Versions
|
144 |
+
- Python: 3.10.15
|
145 |
+
- SetFit: 1.2.0.dev0
|
146 |
+
- Sentence Transformers: 3.3.1
|
147 |
+
- Transformers: 4.45.2
|
148 |
+
- PyTorch: 2.5.1+cu124
|
149 |
+
- Datasets: 2.19.1
|
150 |
+
- Tokenizers: 0.20.1
|
151 |
+
|
152 |
+
## Citation
|
153 |
+
|
154 |
+
### BibTeX
|
155 |
+
```bibtex
|
156 |
+
@article{https://doi.org/10.48550/arxiv.2209.11055,
|
157 |
+
doi = {10.48550/ARXIV.2209.11055},
|
158 |
+
url = {https://arxiv.org/abs/2209.11055},
|
159 |
+
author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren},
|
160 |
+
keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
|
161 |
+
title = {Efficient Few-Shot Learning Without Prompts},
|
162 |
+
publisher = {arXiv},
|
163 |
+
year = {2022},
|
164 |
+
copyright = {Creative Commons Attribution 4.0 International}
|
165 |
+
}
|
166 |
+
```
|
167 |
+
|
168 |
+
<!--
|
169 |
+
## Glossary
|
170 |
+
|
171 |
+
*Clearly define terms in order to be accessible across audiences.*
|
172 |
+
-->
|
173 |
+
|
174 |
+
<!--
|
175 |
+
## Model Card Authors
|
176 |
+
|
177 |
+
*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
|
178 |
+
-->
|
179 |
+
|
180 |
+
<!--
|
181 |
+
## Model Card Contact
|
182 |
+
|
183 |
+
*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
|
184 |
+
-->
|
config.json
ADDED
@@ -0,0 +1,24 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_name_or_path": "sentence-transformers/paraphrase-mpnet-base-v2",
|
3 |
+
"architectures": [
|
4 |
+
"MPNetModel"
|
5 |
+
],
|
6 |
+
"attention_probs_dropout_prob": 0.1,
|
7 |
+
"bos_token_id": 0,
|
8 |
+
"eos_token_id": 2,
|
9 |
+
"hidden_act": "gelu",
|
10 |
+
"hidden_dropout_prob": 0.1,
|
11 |
+
"hidden_size": 768,
|
12 |
+
"initializer_range": 0.02,
|
13 |
+
"intermediate_size": 3072,
|
14 |
+
"layer_norm_eps": 1e-05,
|
15 |
+
"max_position_embeddings": 514,
|
16 |
+
"model_type": "mpnet",
|
17 |
+
"num_attention_heads": 12,
|
18 |
+
"num_hidden_layers": 12,
|
19 |
+
"pad_token_id": 1,
|
20 |
+
"relative_attention_num_buckets": 32,
|
21 |
+
"torch_dtype": "float32",
|
22 |
+
"transformers_version": "4.45.2",
|
23 |
+
"vocab_size": 30527
|
24 |
+
}
|
config_sentence_transformers.json
ADDED
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"__version__": {
|
3 |
+
"sentence_transformers": "3.3.1",
|
4 |
+
"transformers": "4.45.2",
|
5 |
+
"pytorch": "2.5.1+cu124"
|
6 |
+
},
|
7 |
+
"prompts": {},
|
8 |
+
"default_prompt_name": null,
|
9 |
+
"similarity_fn_name": "cosine"
|
10 |
+
}
|
config_setfit.json
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"normalize_embeddings": false,
|
3 |
+
"labels": [
|
4 |
+
"negative",
|
5 |
+
"positive"
|
6 |
+
]
|
7 |
+
}
|
model.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:aba1a3febe1d337cb9daa6b774111b0bdfb5c64ff158bee9a9a1d05cd2cdf5ed
|
3 |
+
size 437967672
|
model_head.pkl
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:63c7aa63a7a0904f0ca3803bd3508b835b6af58f19c5937cf14934400f78b83d
|
3 |
+
size 7055
|
modules.json
ADDED
@@ -0,0 +1,14 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
[
|
2 |
+
{
|
3 |
+
"idx": 0,
|
4 |
+
"name": "0",
|
5 |
+
"path": "",
|
6 |
+
"type": "sentence_transformers.models.Transformer"
|
7 |
+
},
|
8 |
+
{
|
9 |
+
"idx": 1,
|
10 |
+
"name": "1",
|
11 |
+
"path": "1_Pooling",
|
12 |
+
"type": "sentence_transformers.models.Pooling"
|
13 |
+
}
|
14 |
+
]
|
sentence_bert_config.json
ADDED
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"max_seq_length": 512,
|
3 |
+
"do_lower_case": false
|
4 |
+
}
|
special_tokens_map.json
ADDED
@@ -0,0 +1,51 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"bos_token": {
|
3 |
+
"content": "<s>",
|
4 |
+
"lstrip": false,
|
5 |
+
"normalized": false,
|
6 |
+
"rstrip": false,
|
7 |
+
"single_word": false
|
8 |
+
},
|
9 |
+
"cls_token": {
|
10 |
+
"content": "<s>",
|
11 |
+
"lstrip": false,
|
12 |
+
"normalized": false,
|
13 |
+
"rstrip": false,
|
14 |
+
"single_word": false
|
15 |
+
},
|
16 |
+
"eos_token": {
|
17 |
+
"content": "</s>",
|
18 |
+
"lstrip": false,
|
19 |
+
"normalized": false,
|
20 |
+
"rstrip": false,
|
21 |
+
"single_word": false
|
22 |
+
},
|
23 |
+
"mask_token": {
|
24 |
+
"content": "<mask>",
|
25 |
+
"lstrip": true,
|
26 |
+
"normalized": false,
|
27 |
+
"rstrip": false,
|
28 |
+
"single_word": false
|
29 |
+
},
|
30 |
+
"pad_token": {
|
31 |
+
"content": "<pad>",
|
32 |
+
"lstrip": false,
|
33 |
+
"normalized": false,
|
34 |
+
"rstrip": false,
|
35 |
+
"single_word": false
|
36 |
+
},
|
37 |
+
"sep_token": {
|
38 |
+
"content": "</s>",
|
39 |
+
"lstrip": false,
|
40 |
+
"normalized": false,
|
41 |
+
"rstrip": false,
|
42 |
+
"single_word": false
|
43 |
+
},
|
44 |
+
"unk_token": {
|
45 |
+
"content": "[UNK]",
|
46 |
+
"lstrip": false,
|
47 |
+
"normalized": false,
|
48 |
+
"rstrip": false,
|
49 |
+
"single_word": false
|
50 |
+
}
|
51 |
+
}
|
tokenizer.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
tokenizer_config.json
ADDED
@@ -0,0 +1,59 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"added_tokens_decoder": {
|
3 |
+
"0": {
|
4 |
+
"content": "<s>",
|
5 |
+
"lstrip": false,
|
6 |
+
"normalized": false,
|
7 |
+
"rstrip": false,
|
8 |
+
"single_word": false,
|
9 |
+
"special": true
|
10 |
+
},
|
11 |
+
"1": {
|
12 |
+
"content": "<pad>",
|
13 |
+
"lstrip": false,
|
14 |
+
"normalized": false,
|
15 |
+
"rstrip": false,
|
16 |
+
"single_word": false,
|
17 |
+
"special": true
|
18 |
+
},
|
19 |
+
"2": {
|
20 |
+
"content": "</s>",
|
21 |
+
"lstrip": false,
|
22 |
+
"normalized": false,
|
23 |
+
"rstrip": false,
|
24 |
+
"single_word": false,
|
25 |
+
"special": true
|
26 |
+
},
|
27 |
+
"104": {
|
28 |
+
"content": "[UNK]",
|
29 |
+
"lstrip": false,
|
30 |
+
"normalized": false,
|
31 |
+
"rstrip": false,
|
32 |
+
"single_word": false,
|
33 |
+
"special": true
|
34 |
+
},
|
35 |
+
"30526": {
|
36 |
+
"content": "<mask>",
|
37 |
+
"lstrip": true,
|
38 |
+
"normalized": false,
|
39 |
+
"rstrip": false,
|
40 |
+
"single_word": false,
|
41 |
+
"special": true
|
42 |
+
}
|
43 |
+
},
|
44 |
+
"bos_token": "<s>",
|
45 |
+
"clean_up_tokenization_spaces": false,
|
46 |
+
"cls_token": "<s>",
|
47 |
+
"do_basic_tokenize": true,
|
48 |
+
"do_lower_case": true,
|
49 |
+
"eos_token": "</s>",
|
50 |
+
"mask_token": "<mask>",
|
51 |
+
"model_max_length": 512,
|
52 |
+
"never_split": null,
|
53 |
+
"pad_token": "<pad>",
|
54 |
+
"sep_token": "</s>",
|
55 |
+
"strip_accents": null,
|
56 |
+
"tokenize_chinese_chars": true,
|
57 |
+
"tokenizer_class": "MPNetTokenizer",
|
58 |
+
"unk_token": "[UNK]"
|
59 |
+
}
|
vocab.txt
ADDED
The diff for this file is too large to render.
See raw diff
|
|