yasirdemircan commited on
Commit
6498f62
·
verified ·
1 Parent(s): 8c6a8c4

Add SetFit model

Browse files
1_Pooling/config.json CHANGED
@@ -1,5 +1,5 @@
1
  {
2
- "word_embedding_dimension": 384,
3
  "pooling_mode_cls_token": false,
4
  "pooling_mode_mean_tokens": true,
5
  "pooling_mode_max_tokens": false,
 
1
  {
2
+ "word_embedding_dimension": 768,
3
  "pooling_mode_cls_token": false,
4
  "pooling_mode_mean_tokens": true,
5
  "pooling_mode_max_tokens": false,
README.md CHANGED
@@ -1,5 +1,5 @@
1
  ---
2
- base_model: cross-encoder/ms-marco-MiniLM-L-6-v2
3
  library_name: setfit
4
  metrics:
5
  - accuracy
@@ -10,21 +10,24 @@ tags:
10
  - text-classification
11
  - generated_from_setfit_trainer
12
  widget:
13
- - text: The internal DRBG state value of the RNG is stored in NVRAM for persistent
14
- use.
15
- - text: X9.31 PRNG seed keys Triple-DES (112 bit) Generated by gathering entropy.
16
- - text: A hardware noise source is used as a non-Approved RNG to generate seed material
17
- (consisting of random sequences of ones and zeroes) for the FIPS-approved RNG.
18
- - text: ANSI X9.31 RNG Seed Key 168-bit TDES keys/ 256-bit AES key Generated by the
19
- TRNG.
20
- - text: X9.31 PRNG seed keys Triple-DES (112 bit) Generated by gathering entropy RAM
21
- only
 
 
 
22
  inference: true
23
  ---
24
 
25
- # SetFit with cross-encoder/ms-marco-MiniLM-L-6-v2
26
 
27
- This is a [SetFit](https://github.com/huggingface/setfit) model that can be used for Text Classification. This SetFit model uses [cross-encoder/ms-marco-MiniLM-L-6-v2](https://huggingface.co/cross-encoder/ms-marco-MiniLM-L-6-v2) as the Sentence Transformer embedding model. A [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance is used for classification.
28
 
29
  The model has been trained using an efficient few-shot learning technique that involves:
30
 
@@ -35,9 +38,9 @@ The model has been trained using an efficient few-shot learning technique that i
35
 
36
  ### Model Description
37
  - **Model Type:** SetFit
38
- - **Sentence Transformer body:** [cross-encoder/ms-marco-MiniLM-L-6-v2](https://huggingface.co/cross-encoder/ms-marco-MiniLM-L-6-v2)
39
  - **Classification head:** a [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance
40
- - **Maximum Sequence Length:** 512 tokens
41
  - **Number of Classes:** 2 classes
42
  <!-- - **Training Dataset:** [Unknown](https://huggingface.co/datasets/unknown) -->
43
  <!-- - **Language:** Unknown -->
@@ -50,10 +53,10 @@ The model has been trained using an efficient few-shot learning technique that i
50
  - **Blogpost:** [SetFit: Efficient Few-Shot Learning Without Prompts](https://huggingface.co/blog/setfit)
51
 
52
  ### Model Labels
53
- | Label | Examples |
54
- |:---------|:-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
55
- | positive | <ul><li>'PRNG seed key Pre-loaded during the manufacturing process, compiled in the binary.'</li><li>'RNG Key ANSI X9.31 AES 128 bits Key used by the Approved RNG underlying encryption algorithm N/A In plaintext in tamper protected memory entered in factory.'</li><li>'The PRNG seed key is pre-loaded during manufacturing and compiled directly into the binary code.'</li></ul> |
56
- | negative | <ul><li>'The seed key is used as an input to the X9.31 RNG, a deterministic random number generator, and is generally not stored long term.'</li><li>'module stores RNG and DRBG state values only in RAM.'</li><li>'128 bits Random Number Key Key value is used by the random number generator. RTC-RAM Zeroize CSPs service.'</li></ul> |
57
 
58
  ## Uses
59
 
@@ -73,7 +76,7 @@ from setfit import SetFitModel
73
  # Download from the 🤗 Hub
74
  model = SetFitModel.from_pretrained("yasirdemircan/setfit_rng_v3")
75
  # Run inference
76
- preds = model("X9.31 PRNG seed keys Triple-DES (112 bit) Generated by gathering entropy.")
77
  ```
78
 
79
  <!--
@@ -103,14 +106,14 @@ preds = model("X9.31 PRNG seed keys Triple-DES (112 bit) Generated by gathering
103
  ## Training Details
104
 
105
  ### Training Set Metrics
106
- | Training set | Min | Median | Max |
107
- |:-------------|:----|:-------|:----|
108
- | Word count | 6 | 19.2 | 53 |
109
 
110
  | Label | Training Sample Count |
111
  |:---------|:----------------------|
112
- | negative | 22 |
113
- | positive | 23 |
114
 
115
  ### Training Hyperparameters
116
  - batch_size: (16, 16)
@@ -133,16 +136,16 @@ preds = model("X9.31 PRNG seed keys Triple-DES (112 bit) Generated by gathering
133
  ### Training Results
134
  | Epoch | Step | Training Loss | Validation Loss |
135
  |:------:|:----:|:-------------:|:---------------:|
136
- | 0.0149 | 1 | 0.1738 | - |
137
- | 0.7463 | 50 | 0.3142 | - |
138
- | 1.0 | 67 | - | 0.3065 |
139
- | 1.4925 | 100 | 0.045 | - |
140
- | 2.0 | 134 | - | 0.2712 |
141
- | 2.2388 | 150 | 0.0053 | - |
142
- | 2.9851 | 200 | 0.0023 | - |
143
- | 3.0 | 201 | - | 0.2794 |
144
- | 3.7313 | 250 | 0.0018 | - |
145
- | 4.0 | 268 | - | 0.2812 |
146
 
147
  ### Framework Versions
148
  - Python: 3.10.15
 
1
  ---
2
+ base_model: basel/ATTACK-BERT
3
  library_name: setfit
4
  metrics:
5
  - accuracy
 
10
  - text-classification
11
  - generated_from_setfit_trainer
12
  widget:
13
+ - text: With the exception of the DHSK and the RNG seed, all critical security parameters
14
+ are loaded during manufacturing.
15
+ - text: The private key component of an ANSI X9.31-compliant PRNG is stored securely
16
+ in NVRAM.
17
+ - text: This DRNG uses an 8-byte Seed and an 16-byte Seed Key as inputs to the DRNG.
18
+ The seed & seed-key values are generated by the hardware RNG and stored only in
19
+ RAM. These values are zeroized when the module is reset in contact mode or when
20
+ the module is deselected in contactless mode.
21
+ - text: The seed key is used as an input to the X9.31 RNG, a deterministic random
22
+ number generator, and is generally not stored long term.
23
+ - text: PRNG seed key X9.31 SDRAM This is the seed key for the PRNG. It is statically
24
+ stored in the code.
25
  inference: true
26
  ---
27
 
28
+ # SetFit with basel/ATTACK-BERT
29
 
30
+ This is a [SetFit](https://github.com/huggingface/setfit) model that can be used for Text Classification. This SetFit model uses [basel/ATTACK-BERT](https://huggingface.co/basel/ATTACK-BERT) as the Sentence Transformer embedding model. A [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance is used for classification.
31
 
32
  The model has been trained using an efficient few-shot learning technique that involves:
33
 
 
38
 
39
  ### Model Description
40
  - **Model Type:** SetFit
41
+ - **Sentence Transformer body:** [basel/ATTACK-BERT](https://huggingface.co/basel/ATTACK-BERT)
42
  - **Classification head:** a [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance
43
+ - **Maximum Sequence Length:** 384 tokens
44
  - **Number of Classes:** 2 classes
45
  <!-- - **Training Dataset:** [Unknown](https://huggingface.co/datasets/unknown) -->
46
  <!-- - **Language:** Unknown -->
 
53
  - **Blogpost:** [SetFit: Efficient Few-Shot Learning Without Prompts](https://huggingface.co/blog/setfit)
54
 
55
  ### Model Labels
56
+ | Label | Examples |
57
+ |:---------|:----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
58
+ | negative | <ul><li>'ANSI X9.31 Appendix A.2.4 PRNG key AES 128-bit key Internally generated Never exits the module Plaintext in volatile memory Rebooting the modules Seeding the FIPS-Approved ANSI X9.31 PRNG'</li><li>'PRNG seed key Continually polled from various system resources to accrue entropy.'</li><li>'module stores RNG and DRBG state values only in RAM.'</li></ul> |
59
+ | positive | <ul><li>"The PRNG's seed key is encrypted with a device-specific key and securely stored in non-volatile memory."</li><li>'An RNG key compliant with ANSI X9.31 AES 128-bit standards is used by the underlying encryption algorithm and stored in plaintext within tamper-protected memory during factory setup.'</li><li>'The PRNG seed key is pre-loaded during manufacturing and compiled directly into the binary code.'</li></ul> |
60
 
61
  ## Uses
62
 
 
76
  # Download from the 🤗 Hub
77
  model = SetFitModel.from_pretrained("yasirdemircan/setfit_rng_v3")
78
  # Run inference
79
+ preds = model("The private key component of an ANSI X9.31-compliant PRNG is stored securely in NVRAM.")
80
  ```
81
 
82
  <!--
 
106
  ## Training Details
107
 
108
  ### Training Set Metrics
109
+ | Training set | Min | Median | Max |
110
+ |:-------------|:----|:--------|:----|
111
+ | Word count | 6 | 18.8444 | 59 |
112
 
113
  | Label | Training Sample Count |
114
  |:---------|:----------------------|
115
+ | negative | 21 |
116
+ | positive | 24 |
117
 
118
  ### Training Hyperparameters
119
  - batch_size: (16, 16)
 
136
  ### Training Results
137
  | Epoch | Step | Training Loss | Validation Loss |
138
  |:------:|:----:|:-------------:|:---------------:|
139
+ | 0.0149 | 1 | 0.2442 | - |
140
+ | 0.7463 | 50 | 0.1714 | - |
141
+ | 1.0 | 67 | - | 0.1785 |
142
+ | 1.4925 | 100 | 0.0029 | - |
143
+ | 2.0 | 134 | - | 0.1880 |
144
+ | 2.2388 | 150 | 0.0004 | - |
145
+ | 2.9851 | 200 | 0.0003 | - |
146
+ | 3.0 | 201 | - | 0.1818 |
147
+ | 3.7313 | 250 | 0.0003 | - |
148
+ | 4.0 | 268 | - | 0.1837 |
149
 
150
  ### Framework Versions
151
  - Python: 3.10.15
config.json CHANGED
@@ -1,33 +1,24 @@
1
  {
2
- "_name_or_path": "cross-encoder/ms-marco-MiniLM-L-6-v2",
3
  "architectures": [
4
- "BertModel"
5
  ],
6
  "attention_probs_dropout_prob": 0.1,
7
- "classifier_dropout": null,
8
- "gradient_checkpointing": false,
9
  "hidden_act": "gelu",
10
  "hidden_dropout_prob": 0.1,
11
- "hidden_size": 384,
12
- "id2label": {
13
- "0": "LABEL_0"
14
- },
15
  "initializer_range": 0.02,
16
- "intermediate_size": 1536,
17
- "label2id": {
18
- "LABEL_0": 0
19
- },
20
- "layer_norm_eps": 1e-12,
21
- "max_position_embeddings": 512,
22
- "model_type": "bert",
23
  "num_attention_heads": 12,
24
- "num_hidden_layers": 6,
25
- "pad_token_id": 0,
26
- "position_embedding_type": "absolute",
27
- "sbert_ce_default_activation_function": "torch.nn.modules.linear.Identity",
28
  "torch_dtype": "float32",
29
  "transformers_version": "4.45.2",
30
- "type_vocab_size": 2,
31
- "use_cache": true,
32
- "vocab_size": 30522
33
  }
 
1
  {
2
+ "_name_or_path": "basel/ATTACK-BERT",
3
  "architectures": [
4
+ "MPNetModel"
5
  ],
6
  "attention_probs_dropout_prob": 0.1,
7
+ "bos_token_id": 0,
8
+ "eos_token_id": 2,
9
  "hidden_act": "gelu",
10
  "hidden_dropout_prob": 0.1,
11
+ "hidden_size": 768,
 
 
 
12
  "initializer_range": 0.02,
13
+ "intermediate_size": 3072,
14
+ "layer_norm_eps": 1e-05,
15
+ "max_position_embeddings": 514,
16
+ "model_type": "mpnet",
 
 
 
17
  "num_attention_heads": 12,
18
+ "num_hidden_layers": 12,
19
+ "pad_token_id": 1,
20
+ "relative_attention_num_buckets": 32,
 
21
  "torch_dtype": "float32",
22
  "transformers_version": "4.45.2",
23
+ "vocab_size": 30527
 
 
24
  }
model.safetensors CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:1029baca611f2a3e126c834a86c701b72b455e5f39d50add39f1079b55cf5c8e
3
- size 90864192
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b25cc944d4dc118c5ae874af016d2f93be1cdc8eaea62e7e5a03e21efc9755d1
3
+ size 437967672
model_head.pkl CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:bf08e868ca18751478ca82efbe18b004171f3fbbb844d906a0b32c27a97c63fc
3
- size 3983
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:8deee61a156ac484a68ce871d613d34b8c40e12e855e641de092d0f0b87423f4
3
+ size 7055
modules.json CHANGED
@@ -10,5 +10,11 @@
10
  "name": "1",
11
  "path": "1_Pooling",
12
  "type": "sentence_transformers.models.Pooling"
 
 
 
 
 
 
13
  }
14
  ]
 
10
  "name": "1",
11
  "path": "1_Pooling",
12
  "type": "sentence_transformers.models.Pooling"
13
+ },
14
+ {
15
+ "idx": 2,
16
+ "name": "2",
17
+ "path": "2_Normalize",
18
+ "type": "sentence_transformers.models.Normalize"
19
  }
20
  ]
sentence_bert_config.json CHANGED
@@ -1,4 +1,4 @@
1
  {
2
- "max_seq_length": 512,
3
  "do_lower_case": false
4
  }
 
1
  {
2
+ "max_seq_length": 384,
3
  "do_lower_case": false
4
  }
special_tokens_map.json CHANGED
@@ -1,7 +1,51 @@
1
  {
2
- "cls_token": "[CLS]",
3
- "mask_token": "[MASK]",
4
- "pad_token": "[PAD]",
5
- "sep_token": "[SEP]",
6
- "unk_token": "[UNK]"
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7
  }
 
1
  {
2
+ "bos_token": {
3
+ "content": "<s>",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "cls_token": {
10
+ "content": "<s>",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "eos_token": {
17
+ "content": "</s>",
18
+ "lstrip": false,
19
+ "normalized": false,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ },
23
+ "mask_token": {
24
+ "content": "<mask>",
25
+ "lstrip": true,
26
+ "normalized": false,
27
+ "rstrip": false,
28
+ "single_word": false
29
+ },
30
+ "pad_token": {
31
+ "content": "<pad>",
32
+ "lstrip": false,
33
+ "normalized": false,
34
+ "rstrip": false,
35
+ "single_word": false
36
+ },
37
+ "sep_token": {
38
+ "content": "</s>",
39
+ "lstrip": false,
40
+ "normalized": false,
41
+ "rstrip": false,
42
+ "single_word": false
43
+ },
44
+ "unk_token": {
45
+ "content": "[UNK]",
46
+ "lstrip": false,
47
+ "normalized": false,
48
+ "rstrip": false,
49
+ "single_word": false
50
+ }
51
  }
tokenizer.json CHANGED
The diff for this file is too large to render. See raw diff
 
tokenizer_config.json CHANGED
@@ -1,57 +1,72 @@
1
  {
2
  "added_tokens_decoder": {
3
  "0": {
4
- "content": "[PAD]",
5
  "lstrip": false,
6
  "normalized": false,
7
  "rstrip": false,
8
  "single_word": false,
9
  "special": true
10
  },
11
- "100": {
12
- "content": "[UNK]",
13
  "lstrip": false,
14
  "normalized": false,
15
  "rstrip": false,
16
  "single_word": false,
17
  "special": true
18
  },
19
- "101": {
20
- "content": "[CLS]",
21
  "lstrip": false,
22
  "normalized": false,
23
  "rstrip": false,
24
  "single_word": false,
25
  "special": true
26
  },
27
- "102": {
28
- "content": "[SEP]",
29
  "lstrip": false,
30
- "normalized": false,
31
  "rstrip": false,
32
  "single_word": false,
33
  "special": true
34
  },
35
- "103": {
36
- "content": "[MASK]",
37
  "lstrip": false,
38
  "normalized": false,
39
  "rstrip": false,
40
  "single_word": false,
41
  "special": true
 
 
 
 
 
 
 
 
42
  }
43
  },
44
- "clean_up_tokenization_spaces": true,
45
- "cls_token": "[CLS]",
46
- "do_basic_tokenize": true,
47
  "do_lower_case": true,
48
- "mask_token": "[MASK]",
49
- "model_max_length": 512,
50
- "never_split": null,
51
- "pad_token": "[PAD]",
52
- "sep_token": "[SEP]",
 
 
 
 
 
53
  "strip_accents": null,
54
  "tokenize_chinese_chars": true,
55
- "tokenizer_class": "BertTokenizer",
 
 
56
  "unk_token": "[UNK]"
57
  }
 
1
  {
2
  "added_tokens_decoder": {
3
  "0": {
4
+ "content": "<s>",
5
  "lstrip": false,
6
  "normalized": false,
7
  "rstrip": false,
8
  "single_word": false,
9
  "special": true
10
  },
11
+ "1": {
12
+ "content": "<pad>",
13
  "lstrip": false,
14
  "normalized": false,
15
  "rstrip": false,
16
  "single_word": false,
17
  "special": true
18
  },
19
+ "2": {
20
+ "content": "</s>",
21
  "lstrip": false,
22
  "normalized": false,
23
  "rstrip": false,
24
  "single_word": false,
25
  "special": true
26
  },
27
+ "3": {
28
+ "content": "<unk>",
29
  "lstrip": false,
30
+ "normalized": true,
31
  "rstrip": false,
32
  "single_word": false,
33
  "special": true
34
  },
35
+ "104": {
36
+ "content": "[UNK]",
37
  "lstrip": false,
38
  "normalized": false,
39
  "rstrip": false,
40
  "single_word": false,
41
  "special": true
42
+ },
43
+ "30526": {
44
+ "content": "<mask>",
45
+ "lstrip": true,
46
+ "normalized": false,
47
+ "rstrip": false,
48
+ "single_word": false,
49
+ "special": true
50
  }
51
  },
52
+ "bos_token": "<s>",
53
+ "clean_up_tokenization_spaces": false,
54
+ "cls_token": "<s>",
55
  "do_lower_case": true,
56
+ "eos_token": "</s>",
57
+ "mask_token": "<mask>",
58
+ "max_length": 384,
59
+ "model_max_length": 384,
60
+ "pad_to_multiple_of": null,
61
+ "pad_token": "<pad>",
62
+ "pad_token_type_id": 0,
63
+ "padding_side": "right",
64
+ "sep_token": "</s>",
65
+ "stride": 0,
66
  "strip_accents": null,
67
  "tokenize_chinese_chars": true,
68
+ "tokenizer_class": "MPNetTokenizer",
69
+ "truncation_side": "right",
70
+ "truncation_strategy": "longest_first",
71
  "unk_token": "[UNK]"
72
  }
vocab.txt CHANGED
@@ -1,3 +1,7 @@
 
 
 
 
1
  [PAD]
2
  [unused0]
3
  [unused1]
@@ -30520,3 +30524,4 @@ necessitated
30520
  ##:
30521
  ##?
30522
  ##~
 
 
1
+ <s>
2
+ <pad>
3
+ </s>
4
+ <unk>
5
  [PAD]
6
  [unused0]
7
  [unused1]
 
30524
  ##:
30525
  ##?
30526
  ##~
30527
+ <mask>