--- library_name: peft license: mit base_model: ingeniumacademy/bart-cnn-samsum-finetuned tags: - generated_from_trainer datasets: - samsum model-index: - name: bart-cnn-samsum-peft results: [] --- # bart-cnn-samsum-peft This model is a fine-tuned version of [ingeniumacademy/bart-cnn-samsum-finetuned](https://huggingface.co/ingeniumacademy/bart-cnn-samsum-finetuned) on the samsum dataset. It achieves the following results on the evaluation set: - Loss: 0.1346 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 0.0788 | 1.0 | 19 | 0.1344 | | 0.0873 | 2.0 | 38 | 0.1345 | | 0.0777 | 3.0 | 57 | 0.1345 | | 0.0796 | 4.0 | 76 | 0.1345 | | 0.0924 | 5.0 | 95 | 0.1346 | ### Framework versions - PEFT 0.14.0 - Transformers 4.47.1 - Pytorch 2.5.1+cu124 - Datasets 3.2.0 - Tokenizers 0.21.0